254 research outputs found

    High multiplicity W+jets predictions at NLO

    Full text link
    In these proceedings we present results from a recent calculation for the production of a W boson in conjunction with five jets at next-to-leading order in perturbative QCD. We also use results at lower multiplicities to extrapolate the cross section to the same process with six jets.Comment: 5 pages, Proceedings for the DIS2013 conferenc

    Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    No full text
    International audienceIn this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility

    Extrapolating W-associated jet-production ratios at the LHC

    Get PDF
    Electroweak vector-boson production, accompanied by multiple jets, is an important background to searches for physics beyond the standard model. A precise and quantitative understanding of this process is helpful in constraining deviations from known physics. We study four key ratios in W+n-jet production at the LHC. We compute the ratio of cross sections for W+n- to W+(n−1)-jet production as a function of the minimum jet transverse momentum. We also study the ratio differentially, as a function of the W-boson transverse momentum; as a function of the scalar sum of the jet transverse energy, HjetsT; and as a function of certain jet transverse momenta. We show how to use such ratios to extrapolate differential cross sections to W+6-jet production at next-to-leading order, and we cross-check the method against a direct calculation at leading order. We predict the differential distribution in HjetsT for W+6 jets at next-to-leading order using such an extrapolation. We use the BlackHat software library together with SHERPA to perform the computations

    KLaF4 nanocrystallisation in oxyfluoride glass-ceramics

    Get PDF
    Nanocrystallisation of the cubic and hexagonal polymorphs of KLaF 4 in a 70SiO2-7Al2O3-16K 2O-7LaF3 (mol%) glass has been achieved by heat treatment above the glass transition temperature. For treatment at 580°C, only the cubic structure crystallises, with a maximum crystallite size of ~9 nm. At higher temperatures, crystallisation of the hexagonal structure also takes place. The crystallisation process has been analysed using several thermal and structural techniques and is revealed to occur from a constant number of nuclei. The formation of a viscous barrier which inhibits further crystal growth and limits the crystal size to the nanometric range is observed. The title materials doped with lanthanide ions may be good candidates for optical applications

    Crystallization Kinetics of LaF3 Nanocrystals in an Oxyfluoride Glass

    Get PDF
    Nanocrystallization of LaF3 in a glass of composition 55SiO2– 20Al2O3–15Na2O–10LaF3 (mol%) has been achieved by heat treatment above the glass transition temperature. A maximum crystal size of 14 nm has been attained, with the crystalline fraction and crystal size dependent on the time and temperature of thermal treatment. The effect of lanthanum fluoride crystallization is noticeable from the microstructural and compositional changes in the glass matrix, which have been studied using several techniques, including viscosity, dilatometry, X-ray diffraction, and quantitative Rietveld refinement, transmission electron microscopy, and differential scanning calorimetry. The crystallization mechanism is shown to occur via regions of La- and Si-phase separation in the glass, from which the fluoride crystals develop during heat treatment. The interface between the glass matrix and the crystals in the demixed ranges is enriched in network formers, mainly SiO2, creating a viscous barrier, which inhibits further crystal growth and limits the crystal size to the nanometric range.Peer reviewe

    Next-to-leading orderγγ+2−jetproduction at the LHC

    Get PDF
    We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of distributions in γγ þ 2-jet production at the Large Hadron Collider. We consider the contributions from loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BLACKHAT together with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds to Higgs-boson production via vector-boson fusion

    Crystallization of BaF2 from droplets of phase separated glass evidence of a core shell structure by ASAXS

    Get PDF
    Crystallization of BaF2 from droplets of phase separated glass evidence of a core shell structure by ASAXS Armin Hoell, Vikram Singh Raghuwanshi, Christian Bocker, Andreas Herrmann, Christian Rüssel and Thomas Höche Glasses with the mol compositions 1.88 Na2O 15.04 K2O 7.52 Al2O3 69.56 SiO2 6.00 BaF2 and 1.88 Na2O 15.03 K2O 7.52 Al2O3 69.52 SiO2 6.00 BaF2 0.05 SmF3 were studied using X ray diffraction, transmission electron microscopy, and anomalous small angle X ray scattering ASAXS . While the glass doped with samarium showed liquid liquid phase separation of droplets with sizes of around 100 nm, the glass without samarium did not. The samples were annealed at 580 C or at 600 C which led to the crystallization of cubic BaF2. The X ray diffraction patterns showed strongly broadened lines. Hence, the BaF2 crystals possess sizes in the nm range. ASAXS gave evidence of a core shell structure. In agreement with earlier studies, it is assumed that the shell acts as a diffusion barrier that hinders crystal growth. Surprisingly, the cores and shells from the crystallization of the homogeneous glass and from the second glass, which is Sm doped and shows liquid liquid phase separation, both possess similar dimensions, even though the origin of the barrier is very different. The doped samples show long luminescence lifetimes of nearly 5 ms at a wavelength of 600 nm, which is nearly as long as those in fluoride phosphate glasse

    GoSam: A program for automated one-loop Calculations

    Full text link
    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples.Comment: 10 pages, Talk given at the International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), Uxbridge, London, September 201

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure
    corecore