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We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of
distributions in γγ þ 2-jet production at the Large Hadron Collider. We consider the contributions from
loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BLACKHAT together
with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study
standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds
to Higgs-boson production via vector-boson fusion.
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I. INTRODUCTION

Reliable theoretical predictions for Standard Model
processes at the Large Hadron Collider (LHC) are impor-
tant to ongoing searches for new physics. They are also
important to the increasingly precise studies of the recently
discovered Higgs-like boson [1], of the top quark, and of
vector boson self-interactions. Uncovering hints of new
physics beyond the Standard Model requires a good
quantitative understanding of the Standard Model back-
grounds and their uncertainties.
Predictions for background rates at the LHC rely on

perturbative QCD, which enters all aspects of short-distance
collisions at a hadron collider. Leading-order (LO) predic-
tions in QCD suffer from a strong dependence on the
unphysical renormalization and factorization scales. This
dependence gets stronger with increasing jet multiplicity.
Next-to-leading-order (NLO) results generally reduce this
dependence dramatically, typically to a 10–15% residual
sensitivity. Thus, they offer the first quantitatively reliable
order in perturbation theory.
Photon pairs are a key decay channel for detecting and

measuring the Higgs-like boson. A good understanding of
prompt photon-pair backgrounds is important for precision
measurements of its properties and for uncovering devia-
tions from Standard Model expectations. In particular,
when the photon pair is produced in association with
two hadronic jets, the process is an important background
to Higgs-like boson production via vector-boson fusion
(VBF). We study this background in the present paper, both
for standard cuts on the jets and the photons, as well as for
other sets of cuts designed to isolate the VBF region of
phase space.
Inclusive photon-pair productionwas studied atNLOby a

number of groups [2,3]. Gluon-initiated subprocesses,
which arise only at one loop, account for an important

fraction of the cross section. Studying these subprocesses to
their NLO requires two-loop amplitudes [4], which have
been applied to photon-pair production [5]. More recently,
next-to-next-to-leading-order results for inclusive diphoton
production have been presented by Catani, Cieri, de Florian,
Ferrera, and Grazzini [6]. NLO predictions for the produc-
tion of a photon pair in association with a single jet were
given some time ago [7,8]. Here we present predictions for
inclusive photon-pair production in associationwith two jets
at NLO. This process has also been studied recently by
Gehrmann,Greiner, andHeinrich (GGH) [9] and byBadger,
Guffanti, and Yundin (BGY) [10]. (The latter paper also
provides NLO results for photon-pair production in asso-
ciation with three jets.) We study three pairs of cuts. Each
pair consists of a standard jet cut and a cut appropriate for
isolating Higgs bosons formed from vector-boson fusion.
The second and third pairs of cuts are oriented toward
specific experimental analyses by the ATLAS and CMS
collaborations.
In the present paper, we use on-shell methods as imple-

mented in numerical form in theBLACKHAT software library
[11]. This library, together with the SHERPA package [12],
has previously been used to make NLO predictions for a
variety of vector-boson plus multijet production processes
[13–17], most recently forW þ 5-jets [18], and for four-jet
production [19]. It has also beenused to compute γ þ n-jet to
Z þ n-jet ratios for assessing theoretical uncertainties
[20,21] in the CMS searches [22] for supersymmetric
particles. The ATLAS collaboration has also used results
from BLACKHAT computations with SHERPA for Standard
Model studies of electroweak vector-boson production in
association with three or more jets [23]. Other programs that
use on-shell methods are described in Refs. [24,25].
SHERPA is used to manage the numerous partonic

subprocesses entering the calculation, to integrate over
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phase space, to construct physical distributions, and to
output ROOT [26] n-tuples. We use the COMIX package
[27] to compute Born and real-emission matrix elements,
along with the corresponding Catani–Seymour [28] dipole
subtraction terms. Rather than repeating the entire compu-
tation for each scale and for each parton distribution function
(PDF) set, we store intermediate results in n-tuple format,
recordingmomenta for all partons in an event, alongwith the
coefficients of various scale- or PDF-dependent functions in
the event weight [29]. The n-tuple storage makes it possible
to evaluate cross sections and distributions for different
scales and PDF error sets. We have generated two sets of
n-tuples, one corresponding to standard jet cuts and another
adding VBF cuts.We are then able to studymodifications of
each of these cuts without the time-consuming recomputa-
tion of matrix elements. The n-tuples generated for the
present study are available in the format of Ref. [29] with
process directories YY2j and YY2j_VBF.
This paper is organized as follows. In Sec. II we

summarize the basic setup of the computation. In Sec. III
we present our results for cross sections, ratios, and
distributions. We summarize and give our conclusions in
Sec. IV. Tables for distributions are in three Appendices. A
fourth Appendix contains matrix elements at a point in
phase space.

II. BASIC SETUP

In this paper we compute the γγ þ 2-jet processes at
NLO in QCD,

pp ⟶ γγ þ 2 jets: ð2:1Þ
These processes receive contributions from several partonic
subprocesses. At leading order, and in the virtual NLO
contributions, the subprocesses are all obtained from

qq̄gg → γγ;

qq̄q0q̄0 → γγ; ð2:2Þ
by crossing two of the initial-state partons into the final
state. We illustrate the virtual contributions with one or two
external quark pairs in Figs. 1, 2, and 3 although we do not
need any of the diagrams explicitly, as our calculation uses
on-shell methods rather than Feynman diagrams. There are
additional “pure-gluon” scattering processes that we may
consider,

gg → γγgg; ð2:3Þ
which have no external quark legs. This process, illustrated
in Fig. 4, vanishes at tree level and appears only at one loop.
Accordingly, the amplitude is finite at one loop, and it
appears in the squared matrix element only at relative order
α2s , as a one-loop squared contribution. In γγ þ 0-jet or
γγ þ 1-jet production, which contain no tree-level process
with a gg initial state, the analogous processes contribute at
a significant or noticeable level (respectively). The large
value of the gluon distribution can compensate for the
additional two powers of αs, so these subprocesses must be
taken into account. In γγ þ 2-jet production, in contrast,
one crossing of the first subprocess in Eq. (2.2), in which
the quark pair is moved to the final state, does give a tree-
level contribution with a gg initial state. We might then
expect the contribution of the pure-gluon subprocess
to be genuinely suppressed by two powers of αs, relative
to this other gg initial-state contribution (although it does
have a different dependence on the quark electric charges).
We shall test this expectation by including the matrix
element for the gg → γγgg subprocess explicitly in the
NLO calculation. While we will find that its contribution
is small in the total, it is not as small compared to the

FIG. 1. Examples of six-point loop diagrams for the processes
qg → γγqg and qq̄0 → γγqq̄0.

FIG. 2. Examples of six-point fermion-loop diagrams for the
processes qg → γγqg and qq̄0 → γγqq̄0. These diagrams have a
closed quark loop, but the photons do not couple directly to it.

FIG. 3. Examples of six-point fermion-loop diagrams for the processes qg → γγqg and qq̄0 → γγqq̄0. These diagrams have a closed
quark loop. In (a), one photon couples directly to the quark loop, whereas in (b) and (c), both photons couple to the quark loop.
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tree-level gg initial-state contribution as this argument
would suggest. (We do not include similar contributions
from the squaring of finite one-loop helicity amplitudes in
the gg → γγqq̄ subprocess, which are expected to give
smaller contributions.)
In our computation, we obtain amplitudes with multiple

identical quark flavors by appropriate antisymmetrization
of amplitudes for distinct flavors. The virtual contributions
to any given subprocess can be divided into gauge-invariant
subparts. For example, the contributions to amplitudes with
a closed quark loop form a gauge-invariant subset. The
quark-loop contributions can be split up further, depending
on the lines to which the external photons couple. Terms in
which neither photon couples to the closed quark loop, but
only to the open quark lines (lines that connect to external
states), as shown in Fig. 2, give a contribution proportional
to nf, the number of quark flavors. Terms with one photon
coupling to the closed quark loop and one to an open quark
line, as shown in Fig. 3(a), give a contribution proportional
to the flavor sum of quark charges,

P
fQf. Finally, terms in

which both photons couple directly to the closed quark
loop, as shown in Fig. 3(b), give a contribution proportional
to the flavor sum of squared quark charges,

P
fQ

2
f. The

pure-gluon subprocesses (2.3), shown in Fig. 4, are like-
wise proportional to this latter flavor sum.
Calculations to NLO in QCD also require real-emission

matrix elements, corresponding to contributions with an
additional parton in the final state. We obtain the required
subprocesses by crossing three initial-state partons into the
final state in one of the two basic processes,

qq̄ggg → γγ;

qq̄q0q̄0g → γγ: ð2:4Þ
We illustrate these processes in Fig. 5.

In our calculation, the five lightest quarks, u; d; c; s; b,
are all treated as massless. We do not include contributions
to the amplitudes from real or virtual top quarks; we expect
this omission to affect our results only at the percent level.

A. Photon isolation

Photon measurements make use of an isolation criterion
in order to suppress backgrounds from photons arising
from hadrons. From an experimental point of view, the
isolation requirement is necessary to reduce an important
background, consisting of jets with a π0 or η meson
carrying most of the jet’s energy, which is then misiden-
tified as an isolated photon because it decays to a nearly
collinear photon pair. Experimental collaborations typi-
cally use an isolation criterion (see, e.g., Refs. [30,31]),
imposing a limit on the hadronic energy in a cone around
the photon. This limit may be applied after subtractions to
account for detector noise, the effects of the underlying
event or of pileup of other pp collisions, and possible
adjustments for photon energy not captured within the
cone. As a result, the hadronic energy within the cone may
even be negative; along with the accounting for underlying
event or pileup activity, this weakens the link with a purely
perturbative implementation of a fixed-cone isolation
criterion.
A fixed-cone isolation criterion requires the use of

nonperturbative photon fragmentation functions in order
to obtain theoretical predictions. The use of fragmentation
functions requires additional work, and in any case it would
limit the precision attainable because the fragmentation
functions are not that well constrained by experimental
data. Furthermore, unlike the case of the parton distribution
functions, no error sets are available that would allow us to
estimate the uncertainties due to the fragmentation func-
tions. These issues weaken the motivation for using a fixed-
cone isolation in a theoretical calculation, compared to
possible alternative isolation procedures.
Frixione proposed such an alternative photon isolation

procedure, which avoids the need for fragmentation-
function contributions [32] by suppressing the region of
phase space where photons are collinear with jets. It still
allows soft radiation arbitrarily close to the photon, ensur-
ing that it is infrared safe. We use this procedure, requiring
that the partons obey

FIG. 4. Example of a six-point one-loop diagram for the
process gg → γγgg. This one-loop amplitude is finite because
the corresponding tree-level amplitude vanishes.

FIG. 5. Examples of seven-point real-emission diagrams for the processes qg → γγqgg and qq̄ → γγq0q̄0g.
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X
i

ETiΘðδ − RiγÞ ≤ EðδÞ; ð2:5Þ

for all δ ¼ Rðϕ; η;ϕγ; ηγÞ ≤ δ0, where

Rðϕ1; η1;ϕ2; η2Þ ¼ ½ðϕ1 − ϕ2Þ2 þ ðη1 − η2Þ2�1=2; ð2:6Þ

is the usual longitudinally boost-invariant angular distance
measure. In the inequality (2.5), Riγ ¼ Rðϕi; ηi;ϕγ; ηγÞ is
the distance of parton i from the photon, ETi is the
transverse energy of the ith parton, and the restricting
function EðδÞ is given by

EðδÞ ¼ E γ
Tϵγ

�
1 − cos δ
1 − cos δ0

�
n
: ð2:7Þ

The restriction is scaled by the parameter ϵγ to the photon
transverse energy E γ

T. The inequality (2.5) constrains the
hadronic energy in a cone of fixed half-angle δ0 around the
photon axis. The restricting function has the property that it
vanishes as δ → 0 and thus suppresses collinear configu-
rations but allows soft radiation arbitrarily close to the
photon. We will use the Frixione cone, with

ϵγ ¼ 0.5; δ0 ¼ 0.4; and n ¼ 1: ð2:8Þ
An earlier study [20] of inclusive photon production found
that the difference in cross sections between Frixione-cone
and fixed-cone isolation, with similar parameters to the
present study, was less than 1% at large photon transverse
momenta. Although the Frixione isolation has not been
applied directly in experiments, here, at least, we do not
expect the discrepancy to be large.
Our implementation follows the standard SHERPA one;

the photon isolation and jet algorithm using the FASTJET

[33] library are applied independently, with no special
treatment for partons inside the photon cone. After isolation
and jet finding, we apply an additional angular separation
criterion to photon–jet pairs and to the pair of photons.

B. Formalism and software

Several ingredients enter into an NLO calculation: the
Born cross section, the virtual (one-loop) corrections, and
the radiative (real-emission) corrections. The computation
of the latter requires tree-level matrix elements with an
additional parton in the final state compared to the Born
process. The virtual corrections have explicit divergences
in the dimensional regulator ϵ ¼ ð4 −DÞ=2, whereas the
canceling divergences in the real-emission contributions
arise only after integration over D-dimensional phase
space. We use the Catani–Seymour dipole subtraction
scheme [28] in order to implement these cancellations in
a numerical calculation. This scheme adds and subtracts
contributions to the evaluation of the NLO cross section;
schematically, we decompose it as

σNLOn ¼
Z
n
σbornn þ

Z
n
σvirtn þ

Z
n
Σsubtr
n þ

Z
nþ1

ðσrealnþ1− σsubtrnþ1 Þ:
ð2:9Þ

Here the subscripts on the integrals denote the number of
final-state partons, and Σsubtr

n is the result of integrating
σsubtrnþ1 analytically over a one-particle unresolved phase
space. Other subtraction methods in current use include
the Frixione-Kunszt-Signer (FKS) approach [34] and
antenna subtraction [35]; the former has been automated
[36]. We use the SHERPA package [12] to manage the
partonic subprocesses, to integrate over phase space, and to
output ROOT [26] n-tuples.
The techniques we use for computing virtual contribu-

tions are collectively known as on-shell methods and are
reviewed in Refs. [37]. These methods rely on underlying
properties of amplitudes—factorization and unitarity—in
order to express them in terms of simpler, on-shell
amplitudes of lower multiplicity, reducing the swell of
terms. Early applications of the unitarity method [38] to
collider physics included the analytic computation of the
one-loop matrix elements for qq̄ggg, qq̄ggV, and qq̄q0q̄0V
(V ¼ W or Z) processes [39,40]. The latter matrix elements
are used, for example, in the NLO computer program
MCFM [41] as well as in studies at eþe− colliders. In recent
years, on-shell methods have been implemented in a more
flexible numerical form. These methods scale well as the
number of external legs increases [13,16,17,24,25,42–47].
There have also been important advances in computing
virtual corrections with more traditional methods [48,49].
One-loop amplitudes in QCD with massless quarks

may be expressed as a sum over three different types of
Feynman integrals (boxes, triangles, and bubbles) with
additional “rational” terms. These latter terms are rational
functions of spinor variables associated to the external
momenta. The integrals’ coefficients are also rational func-
tions of these variables. The integrals are universal and well
tabulated; the aim of the calculation is to compute their
coefficients as well as the rational terms. In an on-shell
approach, the integral coefficients may be computed using
four-dimensional generalized unitarity [38,40,50], while the
rational termsmay be computed either by a loop-level version
[42] of on-shell recursion [51] or using D-dimensional
unitarity [52]. We use a numerical version [11] of Forde’s
method [53] for the integral coefficients and subtract box
and triangle integrands along the lines of the Ossola–
Papadopoulos–Pittau procedure [54], improving the numeri-
cal stability. To compute the rational terms, we use a
numerical implementation of Badger’s massive continuation
method [55], which is related to D-dimensional unitarity.
These algorithms are implemented in the BLACKHAT

software library [11,45]. BLACKHAT organizes the compu-
tation of the amplitudes in terms of elementary gauge-
invariant “primitive amplitude” building blocks [39,40]. The
primitive amplitudes are then assembled into partial
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amplitudes, which are the kinematic coefficients of the
different color tensors that can appear in the amplitude. The
complete virtual cross section is obtained by interfering
the one-loop partial amplitudes with the tree-level amplitude
and summing over spins and color indices. A given primitive
amplitude can appear inmultiple partial amplitudes and does
not have to be recomputed for each one.
This approach also allows for a straightforward separa-

tion of leading- and subleading-color contributions. The
subleading-color contributions are much smaller, yet more
computationally costly (10 times slower per phase-space
point for γγ þ 2-jet production), but using the separation
we can evaluate them at far fewer phase-space points than
the leading-color contributions, while obtaining comparable
absolute statistical uncertainties. Similarly to the production
of aW boson in association with three [13] or four jets [56],
the subleading-color terms in the virtual contributions are
small. The magnitude of these subleading-color contribu-
tions depends strongly on the cuts. With standard cuts, they
are typically 2% of the leading-color virtual terms and about
0.2% of the cross section.With VBF cuts applied in addition,
these percentages increase to 5% of the virtual and 2% of
the cross section. Our results are based on event samples of
7 × 106 leading-color virtual events and 6 × 105 subleading
color ones.
As explained earlier in this section, there are four distinct

types of contributions to an NLO calculation: Born, virtual,
integrated subtraction, and subtracted real emission. We
perform the phase-space integration of each type independ-
ently, using adaptiveMonte Carlo integration [57].We use an
efficient hierarchical phase-space generator based on QCD
antenna structures [58], as incorporated into SHERPA [27].
For each integration, the code adapts a grid during an initial
phase; the grid is then frozen and used in the next, high-
statistics phase, which provides an estimate of the integration
result and associated statistical uncertainties. SHERPA’s
integrator adjusts the relative number of evaluations between
different subprocesses during grid generation, in order to
optimize the statistical uncertainties of the computed cross
section with a fixed number of matrix-element evaluations.
For the virtual contributions, we use the associated Born

matrix elements to adapt and refine the integration grid. For
the pure-gluon terms, we cannot do this because the
corresponding tree-level amplitudes vanish identically;
instead, we use antenna functions for this purpose. The
choice of the antenna functions is somewhat arbitrary, but
the choice will affect only how quickly the final phase-
space integration converges, and not the result itself. We
choose the antenna functions to incorporate most of the
singularities present in the one-loop amplitudes squared. As
an example, consider the integration of the squared matrix
element Mðg1; g2; g3; γ4; γ5Þ in more detail. We compute
an antenna function using a combination of color-ordered
gluon tree amplitudes symmetrized over g4 and
g5: Asym≡ ðAtreeðg1;g2;g3;g4;g5ÞþAtreeðg1;g2;g3;g5;g4ÞÞ.

The antenna function is then the squared matrix element
jAsymj2, summed over colors and helicities.
The NLO result also requires real-emission corrections

to the LO process, which arise from tree-level amplitudes
with one additional parton; illustrative diagrams are shown
in Fig. 5. We use the COMIX library [27], included in the
SHERPA framework [12], to compute these contributions,
including the Catani–Seymour dipole subtraction terms
[28]. The COMIX code is based on a color-dressed form
[59] of the Berends–Giele recursion relations [60], making
it very efficient for processes with high multiplicities.
In the results described in the present article, we restrict

attention to one PDF set and one jet algorithm. We do use
several correlated values of the renormalization and factori-
zation scales in order to estimate the scale-dependence bands
at LO and at NLO. In addition, we study several different
choices for the experimental cuts. In general, however, we
might need to compute the same physical distributions for a
collection of PDF error sets, and for different jet algorithms,
in addition to different renormalization and factorization
scales. We organize the computation so that the matrix
elements do not have to be reevaluated anew for each choice
of PDF, of scales, or of jet-algorithm parameters (within a
limited set) [29]. We do this by storing intermediate infor-
mation in ROOT-format n-tuple files [26]. This format has also
been used by the experimental collaborations to compare
results fromBLACKHATþSHERPA toexperimental data [23].

C. Checks

We have performed a number of consistency checks on the
virtual amplitudes and on integrated cross sections. We have
checked the factorization properties of primitive amplitudes.
As checks on our diphoton setup, at isolated phase-space
points, we have checked the ggγγ amplitude against MCFM
[41], the qq̄γγ amplitude against the HELAC-1LOOP library
[61], the gggγγ amplitude against GoSam [25], the qq̄gγγ
amplitude against older analytic results obtained fromvarious
permutations of theqq̄ggg amplitudes inRef. [39] and against
GoSam, and a selection of γγ þ 2-jet amplitudes against
GoSam. We have also compared the cross section for
γγ þ 0-jet production with the one produced by MCFM,
and that for γγ þ 1-jet productionwith the results ofGGH [8].
We have compared the total cross section for γγ þ 2-jet
production with the one of GGH [9], using their cuts and
choice of central scale, and we find agreement with their
updated results. In addition, we have compared the total cross
section, and the diphoton invariant mass distribution with the
results of BGY [10] (again using the GGH cuts and scale
choice), and we find complete agreement within statistical
uncertainties.

D. Kinematics and observables

In our study, we consider the inclusive process pp →
γγ þ 2 jets at an LHC center-of-mass energy of

ffiffiffi
s

p ¼
8 TeV, applying the following cuts:
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pγ1
T >50GeV; pγ2

T >25GeV; jηγj<2.5; Rγγ>0.45;

pjet1
T >40GeV; pjet2

T >25GeV; jηjetj<4.5; Rγ;jet>0.4:

ð2:10Þ

We will call these the “basic” set of cuts. In these
expressions, R is the usual longitudinally boost-invariant
angular distance, Rab ¼ ½Δϕ2

ab þ Δη2ab�1=2. We define jets
using the anti-kT algorithm [62] with parameter R ¼ 0.4.
The jets are ordered in transverse momentum pT and are
labeled numerically in order of decreasing pT, with jet 1
being the leading (hardest) jet.
In addition, we also consider further cuts, which select

the kinematic region for VBF production of the Higgs-like
boson, with the boson decaying into two photons. We will
call these the VBF cuts,

mjj > 400 GeV; jΔηjjj > 2.8; ð2:11Þ

where mjj is the invariant mass of the subsystem made up
of the two hardest jets and Δηjj is the difference in
pseudorapidity between these two jets. We will show
distributions both with and without VBF cuts.
For the central renormalization and factorization scale in

our calculation, we use the dynamical scale ĤT=2, where

ĤT ≡ pγ1
T þ pγ2

T þ
X
m

pm
T : ð2:12Þ

The sum runs over all final-state partons m, whether or not
they are inside jets that pass the cuts. This means that
modifications to the experimental cuts will not affect the
value of the matrix element at a given point in phase space.
We note in passing that, because the photons are massless,
ĤT in this calculation has the same value as the Ĥ0

T variable
the BLACKHAT collaboration has employed previously for
studies of W or Z production accompanied by jets. (In Ĥ0

T,
the transverse momentum of a boson with mass M is
replaced by the transverse energy ET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

p
.) We

quote scale variation bands corresponding to varying the
scales simultaneously up and down by a factor of 2, taking
the maximum and minimum of differential cross sections at
the five scales ĤT=2 × ð1=2; 1= ffiffiffi

2
p

; 1;
ffiffiffi
2

p
; 2Þ.

We also study the effect of an additional set of cuts,
suggested by the ATLAS collaboration, which selects a
window on the diphoton invariant mass centered around the
Higgs-like boson mass,

122GeV≤mγγ≤130GeV;

pγ1
T >0.35mγγ; pγ2

T >0.25mγγ; jyγj<2.37; Rγγ>0.45;

pjet
T >30GeV; Rγ;jet>0.4; jyjetj<4.4: ð2:13Þ

We will call these the ATLAS cuts. The additional VBF
cuts here are the same as those in Eq. (2.11).
Finally, we study a set of cuts suggested by the CMS

collaboration,

100 GeV ≤ mγγ ≤ 180 GeV;

pγ1
T > mγγ=2; pγ2

T > 25 GeV; jηγj < 2.5;

pjet
T > 30 GeV; Rγγ > 0.45; jηjetj < 4.7;

Rγ;jet > 0.5; jϕjj − ϕγγj > 2.6; jη�j < 2.5: ð2:14Þ

In these inequalities, ϕjj and ϕγγ denote the azimuthal angle
of the dijet and diphoton systems, respectively, and η�
denotes the relative diphoton pseudorapidity (as introduced
by Rainwater, Szalapski, and Zeppenfeld [63]),

η� ¼ ηγγ −
1

2
ðηjet1 þ ηjet2Þ: ð2:15Þ

In this equation, the pseudorapidity ηγγ ¼ − ln tanðθγγ=2Þ,
where θγγ is the polar angle in the lab frame for the
diphoton momentum vector. The jet algorithm used here is
anti-kT with R ¼ 0.5. We will call these the CMS cuts.
The additional VBF cuts in this case are

mjj > 500 GeV; jΔηjjj > 3: ð2:16Þ

The calculation proceeds in two phases: generation of
n-tuples and analysis. In the first phase, we generate two
sets of ROOT [26] format n-tuples using a looser set of cuts,

pγ1
T >25GeV; pγ2

T >25GeV; jηγj<2.5; Rγγ>0.2;

pjet1
T >25GeV; pjet2

T >25GeV; jηjetj<4.8; Rγ;jet>0.4;

ð2:17Þ

where the Rγ;jet cut at generation level is applied only to the
leading two jets, with the second set also imposing VBF
cuts that are looser than those of Eq. (2.11),

mjj > 300 GeV; jΔηjjj > 2.0: ð2:18Þ

In principle, if we had sufficient statistics in the first set,
generated with the cuts of Eq. (2.17), we would not need a
second, more targeted set in order to study the effect of
VBF cuts. These cuts push us into a small corner of phase
space, however, reducing the cross section by a factor of
roughly 20. Adequate statistics in the first set would thus be
400 times larger than would be needed for studies without
VBF cuts. It is much more efficient to generate a second set
of n-tuples in order to obtain reasonable statistical uncer-
tainties for the latter cuts. The first set of n-tuples are in the
process directory YY2j and the second in YY2j_VBF. The
location of the directory may be found at http://blackhat
.hepforge.org/trac/wiki/Location.
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In the second, analysis, phase of our calculation, we
impose the following six sets of cuts:

Basic∶ cuts of Eq: ð2.10Þ
Basicþ VBF∶ cuts of Eqs: ð2.10Þ and ð2.11Þ
ATLAS∶ cuts of Eq: ð2.13Þ
ATLASVBF∶ cuts of Eqs: ð2.13Þ and ð2.11Þ
CMS∶ cuts of Eq:ð2.14Þ
CMSVBF∶ cuts of Eqs: ð2.14Þ and ð2.16Þ

We compute the cross section for each set of cuts, as well as
various kinematical distributions.
The n-tuples we have generated are also valid for anti-kT ,

kT , and SISCONE algorithms [62,64] for R ¼ 0.4, 0.5, 0.6,
0.7, as implemented in the FASTJET package [33]. In the
SISCONE case, the merging parameter f is chosen to be 0.75.
In addition to distributions in transverse momenta,

invariant masses, rapidities, and azimuthal angles, we will
also study a distribution in cos θ�, the cosine of the polar
angle of the photon pair with respect to the z axis of the
Collins–Soper frame [65]. This variable can also be
expressed as

j cos θ�j ¼ j sinhðΔηγγÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpγγ

T =mγγÞ2
q 2pγ1

T p
γ2
T

m2
γγ

: ð2:19Þ

It has been used by the ATLAS [66] and CMS [67]
collaborations in their studies of the diphoton decays of
the Higgs-like boson.
In our study, we use the MSTW2008 LO and NLO PDFs

[68] at the respective orders. We use the five-flavor running
αsðμÞ and the value of αsðMZÞ supplied with the parton
distribution functions. As explained in Ref. [20] (see also
Refs. [69]), we use the zero-momentum-squared value,
αEMð0Þ ¼ 1=137 (to our required precision), for the
electromagnetic coupling.
We perform our fixed-order NLO computation at the

parton level. We do not apply a parton shower, nor
corrections due to nonperturbative effects such as those
induced by the underlying event or hadronization. For
comparisons to experiment, it is important to incorporate
these effects or at least estimate their size.

III. RESULTS

A. Scale dependence

We expect perturbative results to be more stable under
variation of the renormalization and factorization scales as
the perturbative order is increased. The residual variability
has been used as a proxy for the expected uncertainty due to
higher-order corrections beyond the calculated order. As an
example, we saw that, in studies of W production in

association with several jets [13,14,16,18], the variability
increases substantially with a growing number of jets at LO
but stabilizes at under 20% at NLO (for a range of scales
between half and twice the central value). In Fig. 6, we
show how the cross section for γγ þ 2-jet production varies
with a common renormalization and factorization scale,
μR ¼ μF ¼ μ. We vary the common scale up and down by a
factor of 2 at both LO and NLO, around a central choice of
ĤT=2. The NLO variation is under 10% of the cen-
tral value.
The kinematical distributions we study have a large

dynamic range, and ĤT=2 is a suitable event-by-event
scale, matching typical energy scales individually rather
than merely on average. In section III C, we plot a variety of
distributions. The bands in the plots all correspond to
varying the scales up and down by a factor of 2 around the
central value. Other authors have suggested alternate
choices of dynamical scale [49,70]; GGH have used such
an alternate dynamical scale [9].

B. Dependence on the Frixione-cone energy fraction

In a previous study of single-photon production in
association with jets, we observed that the NLO cross
section depended only weakly on the parameters used for
the Frixione-cone isolation of the photons. We have
examined the dependence on one of these parameters,
the energy fraction ϵγ, in the present study. The results are
shown in Fig. 7. The LO result is of course independent of
the parameter, as there is no additional radiation that could
enter the photon cone; this result is shown for comparison
in the figure. The NLO cross section is only weakly
dependent on this parameter in the range 0.03 < ϵγ < 0.5.
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FIG. 6 (color online). The renormalization-scale dependence of
the cross section for γγ þ 2-jet production using a dynamical
central scale of μ0 ¼ ĤT=2. The renormalization and factoriza-
tion scales are kept equal and varied simultaneously. The LO
result is given by the dashed (blue) line and the NLO one by the
solid (black) line. The error bars indicate the numerical integra-
tion uncertainties.
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C. Cross sections and distributions

In Table I, we present the LO and NLO parton-level cross
sections for inclusive diphoton production accompanied by
two jets. We consider the six different sets of cuts discussed
in Sec. II D. We list separately the contributions from the
gg → γγgg subprocess (this contribution is also included in
the NLO prediction).
The pure-gluon process starts only at one loop and is

therefore suppressed by two powers of αs. As discussed
earlier, we might expect it to be genuinely suppressed
compared to the tree-level gg initial-state contribution. We
find that the pure-gluon subprocess does give only a small
contribution, as shown inTable I: it contributes less than 2.5%
of theNLO result in all cases.However, it is not as suppressed
as one might have naively expected, compared to the LO gg

initial-state contribution, which is approximately 5% of the
LO cross section for both Basic and Basicþ VBF cuts.
We also present predictions for a number of distributions.

In Fig. 8, we show the distribution in the transverse
momentum of the leading jet for the cuts of Eq. (2.10)
and also with the addition of the VBF cuts of Eq. (2.11). In
Fig. 9, we show the same distribution with the ATLAS cuts
of Eq. (2.13) as well as with the additional VBF cuts of
Eq. (2.11). We provide detailed tables of our results in
Appendices A, B, and C.
In Figs. 10, 11, 12, and 13 we show a series of

distributions side by side for the cuts of Eq. (2.10) and
for the same cuts with the addition of the VBF cuts of
Eq. (2.11): in Fig. 10, the transverse momentum of the
second jet; in Fig. 11, the transverse momentum of the
leading photon; in Fig. 12, the dijet invariant mass; and in
Fig. 13, the photon-pair invariant mass.
In Figs. 14, 15, 16, and 17 we show a series of

distributions side by side for the ATLAS cuts of
Eq. (2.13) and for the same cuts with the addition of the
VBF cuts of Eq. (2.11): in Fig. 14, the transverse momen-
tum of the photon pair; in Fig. 15, the absolute value of the
rapidity of the photon pair; in Fig. 16, the absolute value of
cos θ�, as defined in Eq. (2.19); and in Fig. 17, the
azimuthal angle difference between the leading two jets.
In Figs. 18, 19, and 20 we show three distributions side

by side for the CMS cuts of Eq. (2.14) and for the same cuts
with the addition of the VBF cuts of Eq. (2.16): in Fig. 18,
the invariant mass distribution of the photon pair; in
Fig. 19, the absolute value of the rapidity of the photon
pair; and in Fig. 20, the azimuthal angle difference between
the leading two jets.
The leading-jet transverse-momentum distribution,

shown in the left plot in Fig. 8, is fairly typical in many
respects. The upper panel shows the distribution itself.
Because it is steeply falling, several features are easier to
see in the ratio to the central NLO prediction, shown in the
lower panel. The NLO prediction is somewhat softer than
the LO one; that is, it falls somewhat faster, as seen in the
upward slope of the dashed blue line in the lower panel.
The scale-dependence bands are shown in hatched orange-
brown at LO and gray at NLO. The NLO band is narrower
than the LO one throughout, as expected, and is within
10–15% of the central value throughout most of the range.
In the lowest pT bin, the NLO correction is significant—the
LO prediction is about 30% lower than the NLO one. This
is accompanied by a wider scale-dependence band in this
bin. The VBF cuts push the peak of the NLO distribution
to around 70 GeV, as shown in the right plot of Fig. 8,
from the cut value of 50 GeV. The lower bins have
larger NLO corrections, and correspondingly larger scale
dependence.
We show the same distribution with ATLAS cuts in

Fig. 9. These cuts flatten the distribution somewhat (note
that the plots cut off at a lower transverse momentum than
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FIG. 7 (color online). The dependence of the cross section on
the ϵγ parameter in the Frixione-cone photon isolation. The LO
result is given by the dashed (blue) line and the NLO one by the
solid (black) line. The error bars indicate the numerical integra-
tion uncertainties.

TABLE I. Total cross sections in femtobarns for γγ þ 2-jet
production with various sets of cuts: Basic [Eq. (2.10)], VBF
[Eqs. (2.10) and (2.11)], ATLAS [Eq. (2.13)], ATLAS VBF
[Eqs. (2.13) and (2.11)], CMS [Eq. (2.14)], and CMS
VBF [Eqs. (2.14) and (2.16)]. The numerical integration uncer-
tainty is given in parentheses, and the scale dependence is quoted in
superscripts and subscripts. The contribution of the gg → γγgg
subprocess, shown separately in the last column, is small but is
included in the NLO value.

Cuts LO NLO gg → γγgg

Basic 2627ð3Þþ794
−567 3070ð13Þþ257

−298 48(3)

BasicþVBF 136.0ð0.2Þþ52.6
−34.9 155ð1Þþ14

−18 2.75(0.05)

ATLAS 89.3ð0.5Þþ26.6
−19.1 100ð2Þþ7

−9 1.46(0.05)

ATLASþVBF 3.91ð0.03Þþ1.53
−1.01 4.6ð0.1Þþ0.5

−0.6 0.075(0.004)

CMS 574ð1Þþ170
−122 596ð3Þþ21

−43 7.82(0.08)

CMSþVBF 11.84ð0.05Þþ4.68
−3.09 14.7ð0.2Þþ2.0

−2.0 0.34(0.01)
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in Fig. 8). The shape corrections are again more noticeable
after VBF cuts, and the scale dependence remains large
even at NLO in the lowest bins, where the LO prediction is
nearly 50% lower than the NLO one.

The transverse-momentum distributions of the second jet
and of the leading photon are shown in Figs. 10 and 11,
respectively. The VBF cuts do not alter the shape of the
photon pT distribution much. The NLO corrections soften
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FIG. 8 (color online). The leading-jet transverse-momentum distribution in γγ þ 2-jet production. The left plot shows the distribution
for the basic cuts of Eq. (2.10), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The upper panels show the LO (dashed
blue) and NLO (solid black) distributions, while the lower panels show the ratios to the NLO prediction, including the LO (hatched
brown) and NLO (gray) scale-dependence bands. The thin vertical lines at the center of each bin (where visible) indicate the numerical
integration errors for the bin.
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the distribution in a manner typical for pT distributions.
The softening is particularly pronounced for the second-jet
pT distribution after VBF cuts.
The distribution of the dijet invariant mass, shown in the

left plot of Fig. 12, has a peak around 100 GeV sculpted by

the cuts of Eq. (2.10). If we impose VBF cuts, the lower
part of the distribution is cut out, and we are left only with
the high-mass tail shown in the right plot of Fig. 12. In the
latter case, the LO and NLO distributions are similar in
shape. The same is true for the distribution without VBF
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FIG. 11 (color online). The leading-photon transverse-momentum distribution in γγ þ 2-jet production. The left plot shows the
distribution for the basic cuts of Eq. (2.10), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and
bands are as in Fig. 8.
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FIG. 10 (color online). The second jet transverse-momentum distribution in γγ þ 2-jet production. The left plot shows the distribution
for the basic cuts of Eq. (2.10), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and bands are as
in Fig. 8.
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cuts, in the peak region and above. At low invariant mass, in
contrast, the NLO corrections are large, and the NLO scale
dependence remains substantial.
This can be understood as follows. Given the minimum

pTs imposed on the jets, small dijet invariant masses arise
primarily from a small angular separation between the jets.
In this region, the LO matrix element approaches a

collinear factorization limit, where it becomes a lower-
point matrix element, with only three massless objects (two
photons and one parton) in the final state. Let us consider
the real-emission corrections to the LO process in this
region, compared to the real-emission corrections at a
generic point in the LO process’s phase space. The phase
space for three massless final-state objects is more
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FIG. 13 (color online). The photon-pair invariant-mass distribution in γγ þ 2-jet production. The left plot shows the distribution for the
basic cuts of Eq. (2.10), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and bands are as in Fig. 8.
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FIG. 12 (color online). The dijet invariant-mass distribution in γγ þ 2-jet production. The left plot shows the distribution for the basic
cuts of Eq. (2.10), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and bands are as in Fig. 8.
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constrained than the one for four massless final-state
objects, and the additional constraints are more significant
than in comparing the phase space for four massless final-
state objects with one for five objects. Accordingly, the
additional emission of a gluon has a relatively larger phase

space to fill, so the additional emission relaxes kinematic
constraints in a more substantial way than at a generic point
in phase space. This is similar to the larger corrections seen
in three-jet production compared to four-jet production, or in
W þ 2-jet production compared to W þ 3-jet production.
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FIG. 14 (color online). The diphoton transverse-momentum distribution in γγ þ 2-jet production. The left plot shows the distribution
for the ATLAS cuts of Eq. (2.13), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and bands are as
in Fig. 8.
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FIG. 15 (color online). The distribution of the absolute value of the diphoton rapidity in γγ þ 2-jet production. The left plot shows the
distribution for the ATLAS cuts of Eq. (2.13), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and
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The distribution of the photon pair’s invariant mass,
shown in Fig. 13, has a peak around 100 GeV sculpted by
the cuts of Eq. (2.10). In the peak region and above, the
distribution has modest NLO corrections, and its shape is
somewhat hardened by VBF cuts. In these regions, the

scale dependence narrows significantly at NLO. At low
invariant mass, in contrast, the NLO corrections are
again large, and the NLO scale dependence remains
substantial, even more so than for the dijet mass distribu-
tion. Here this is true whether VBF cuts are imposed
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FIG. 16 (color online). The distribution of j cos θ�j, as defined in Eq. (2.19), in γγ þ 2-jet production. The left plot shows the
distribution for the ATLAS cuts of Eq. (2.13), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels, curves, and
bands are as in Fig. 8.

100

101

102

d
2

d
fb

ra
d

2 X

LO

NLO

s 8 TeV

R F HT 2
122 GeV m 130 GeV

pT
jet 30 GeV, yjet 4.4, R ,jet 0.4

pT
1 0.35m , y 2.37

pT
2 0.25m , R 0.45

R 0.4 anti kT
BLACKHAT SHERPA

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

Dijet

LO NLO LO scale NLO scale

10 1

100

101

d
2

d
fb

ra
d

2 X

LO

NLO

s 8 TeV

R F HT 2
122 GeV m 130 GeV

pT
jet 30 GeV, yjet 4.4, R ,jet 0.4

pT
1 0.35m , y 2.37

pT
2 0.25m , R 0.45

m jj 400 GeV, jj 2.8
R 0.4 anti kT

BLACKHAT SHERPA

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

Dijet

LO NLO LO scale NLO scale

FIG. 17 (color online). The distribution of the azimuthal angle between the two leading jets in γγ þ 2-jet production. The left plot
shows the distribution for the ATLAS cuts of Eq. (2.13), and the right plot is with the VBF cuts of Eq. (2.11) in addition. The panels,
curves, and bands are as in Fig. 8.
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or not. Once again, small invariant masses arise from a
small angular separation, in this case of the photons
instead of the jets. In this region, while the LO matrix
element does not factorize (there is no collinear singularity
for a photon pair), the kinematics again resembles that
of a lower-point matrix element, with only three massless

objects in the final state. Once again the kinematic
relaxation in the real-emission corrections is more signifi-
cant than at a generic point in phase space. The CMS cuts
(2.14) restrict attention to sufficiently large values of the
diphoton invariant mass, shown in Fig. 18, that the NLO
corrections remain modest in magnitude, and do not alter
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FIG. 18 (color online). The photon-pair invariant-mass distribution in γγ þ 2-jet production. The left plot shows the distribution for the
CMS cuts of Eq. (2.14), and the right plot is with the VBF cuts of Eq. (2.16) in addition. The panels, curves, and bands are as in Fig. 8.
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FIG. 19 (color online). The distribution of the absolute value of the diphoton rapidity in γγ þ 2-jet production. The left plot shows the
distribution for the CMS cuts of Eq. (2.14), and the right plot is with the VBF cuts of Eq. (2.16) in addition. The panels, curves, and
bands are as in Fig. 8.
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the shape of the distribution, both before and after
VBF cuts.
If we had no jets, or only one jet, in the final state, in

addition to the pair of photons, then restricting the photon-
pair transverse momentum to small values would impose a
strong constraint on additional radiation; we would expect
to see large corrections from a mismatch between virtual
and real-emission contributions there. With two jets in the
final state, however, such a restriction imposes no con-
straint on additional radiation, and the corrections should
be small. This is what we see if we examine the transverse
momentum distribution of the photon pair, shown in
Fig. 14, both before and after VBF cuts. The shape of
this distribution has only small corrections at NLO. It is
influenced by the restriction (suggested by ATLAS) to a
photon-pair mass window around the mass of the Higgs-
like boson. The shape of the photon-pair rapidity distri-
bution, shown subject to ATLAS cuts and folded over to
positive values in Fig. 15, is similarly unaffected by NLO
corrections before VBF cuts; the photon pair tends to be
produced centrally. In contrast, after VBF cuts are applied,
the NLO distribution becomes somewhat more central than
the LO prediction. With the CMS cuts, shown in Fig. 19,
the corrections to the shape are similarly modest before
VBF cuts but even more significant after VBF cuts than for
the corresponding ATLAS cuts.
The distribution with respect to the Collins–Soper angle

j cos θ�j defined in Eq. (2.19) is shown in Fig. 16. The
shapes of these distributions are also similar at NLO and
LO, both before and after VBF cuts.

We show the distribution of the azimuthal angle sepa-
ration between the two leading jets, using ATLAS cuts, in
Fig. 17. The jets are somewhat more decorrelated at NLO,
as might be expected from the addition of radiation. This
effect is much stronger after VBF cuts, so that at smaller
angles (<1 radian) the LO prediction is only half of the
NLO one, and the NLO scale dependence is correspond-
ingly larger. The effects are similar when applying CMS
cuts, as shown in Fig. 20, again with a stronger effect after
applying VBF cuts.

IV. CONCLUSIONS

In this paper, we have studied the inclusive production of
a photon pair in association with two jets, at NLO in
perturbative QCD. This final state is an important back-
ground to the study of the Higgs-like boson [1] decaying
into a photon pair in the vector-boson fusion production
channel. We have employed a Frixione-style isolation
criterion for the photon. While this criterion does not
correspond precisely to experimental practice, given cur-
rent practice and various uncertainties in traditional cone
isolation, it is likely to be useful as a theoretical prediction.
We have examined the cross section and a variety of
distributions under three different pairs of cuts. Each pair
contains a “standard” set of cuts, corresponding to generic
production of this final state, and an additional set of cuts
restricting the phase space to that corresponding to searches
for Higgs boson production via vector-boson fusion. We
have made the n-tuple files [29] used publicly available, in
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FIG. 20 (color online). The distribution of the azimuthal angle between the two leading jets in γγ þ 2-jet production. The left plot
shows the distribution for the CMS cuts of Eq. (2.14), and the right plot is with the VBF cuts of Eq. (2.16) in addition. The panels,
curves, and bands are as in Fig. 8.
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process directories YY2j and YY2j_VBF, as explained in
Sec. II D. (The location of these directories may be found at
http://blackhat.hepforge.org/trac/wiki/Location.) One pair
of cuts uses fairly generic jet and photon transverse
momentum cuts, while the other two pairs use cuts
suggested by CMS and ATLAS, which also restrict
attention to a window in the photon-pair invariant mass
surrounding the Higgs-like boson mass. In the total cross
section and in most parts of distributions, we find that the
NLO scale dependence is reduced to 10–15%, so that the
NLO prediction should be quantitatively reliable. In some
bins of some distributions, the NLO corrections alter the
LO prediction quite substantially, and in these cases the
scale dependence at NLO remains substantially larger.
These features suggest that the NLO corrections will play
an important role in upcoming experimental analyses of
data from the next run of the LHC.
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APPENDIX A: TABLES OF DISTRIBUTIONS FOR
BASIC AND VBF CUTS

In this appendix, we provide tables for the kinematical
distributions displayed and discussed in Sec. III. All tables
show differential cross sections at both LO and NLO, with
numerical integration uncertainties given in parentheses
and scale-dependence bands indicated by super- and
subscripts. For distributions in dimensionful variables,
the variables are given in GeV, and the units for the
distributions are femtobarns per GeV. We display results
both with the cuts of Eq. (2.10), shown in columns
marked with “Basic,” and these cuts supplemented by
the VBF cuts of Eq. (2.11), shown in columns marked
with “VBF.” In Table II, we display the leading-jet
transverse-momentum distribution; in Table III, we
display the second-jet transverse-momentum distribution;
in Table IV, we display the leading-photon transverse-
momentum distribution; and in Table V, we display the
photon-pair invariant-mass distribution.
The dijet invariant-mass distribution has different ranges

for the standard and VBF cuts; we display the results for the
two sets of cuts in separate tables: in Table VI the
distribution for the cuts of Eq. (2.10) and in Table VII
the distribution with these cuts supplemented by the VBF
cuts of Eq. (2.11).

TABLE II. The leading-jet transverse-momentum distribution, in fb/GeV, in γγ þ 2-jet production, as shown in Fig. 8.

LO NLO

pT Basic VBF Basic VBF

40–60 32.13ð0.09Þþ9.27
−6.71 0.611ð0.005Þþ0.251

−0.163 41.0ð0.3Þþ4.9
−4.6 0.99ð0.02Þþ0.24

−0.18

60–80 27.58ð0.07Þþ8.14
−5.85 0.933ð0.004Þþ0.370

−0.244 34.3ð0.3Þþ3.7
−3.7 1.36ð0.06Þþ0.25

−0.22

80–100 20.09ð0.05Þþ6.05
−4.32 1.078ð0.004Þþ0.416

−0.276 24.4ð0.4Þþ2.3
−2.5 1.29ð0.06Þþ0.14

−0.16

100–120 14.82ð0.05Þþ4.52
−3.22 1.059ð0.005Þþ0.402

−0.269 17.0ð0.2Þþ1.3
−1.6 1.18ð0.02Þþ0.10

−0.13

120–140 10.72ð0.04Þþ3.31
−2.35 0.883ð0.004Þþ0.334

−0.223 10.8ð0.2Þþ0.2
−0.7 0.90ð0.02Þþ0.02

−0.08

140–160 7.44ð0.03Þþ2.33
−1.65 0.665ð0.003Þþ0.251

−0.168 7.8ð0.1Þþ0.3
−0.6 0.66ð0.05Þþ0.02

−0.06

160–180 5.15ð0.02Þþ1.64
−1.15 0.471ð0.003Þþ0.179

−0.120 5.09ð0.09Þþ0.10
−0.34 0.42ð0.01Þþ0.00

−0.03

180–200 3.56ð0.02Þþ1.14
−0.80 0.324ð0.002Þþ0.124

−0.083 3.51ð0.08Þþ0.06
−0.24 0.31ð0.01Þþ0.00

−0.02

200–220 2.51ð0.01Þþ0.82
−0.57 0.224ð0.002Þþ0.086

−0.058 2.52ð0.04Þþ0.04
−0.17 0.188ð0.009Þþ0.000

−0.012

220–240 1.81ð0.01Þþ0.59
−0.42 0.156ð0.002Þþ0.060

−0.040 1.72ð0.04Þþ0.02
−0.11 0.146ð0.006Þþ0.002

−0.011

240–260 1.32ð0.01Þþ0.44
−0.31 0.108ð0.001Þþ0.042

−0.028 1.29ð0.04Þþ0.02
−0.09 0.088ð0.005Þþ0.000

−0.006
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TABLE III. The second-jet transverse-momentum distribution in fb/GeV in γγ þ 2-jet production, as shown in Fig. 10.

LO NLO

pT Basic VBF Basic VBF

25–45 71.8ð0.1Þþ21.3
−15.3 2.332ð0.009Þþ0.922

−0.608 83.5ð0.6Þþ7.1
−8.0 2.86ð0.06Þþ0.39

−0.39

45–65 28.87ð0.06Þþ8.75
−6.24 1.775ð0.005Þþ0.685

−0.455 35.6ð0.3Þþ3.5
−3.7 2.12ð0.03Þþ0.20

−0.26

65–85 12.77ð0.03Þþ3.95
−2.80 1.182ð0.004Þþ0.446

−0.298 15.1ð0.1Þþ1.4
−1.5 1.32ð0.02Þþ0.11

−0.15
85–105 6.58ð0.02Þþ2.06

−1.46 0.664ð0.002Þþ0.250
−0.168 7.50ð0.07Þþ0.51

−0.69 0.70ð0.01Þþ0.04
−0.07

105–125 3.78ð0.02Þþ1.20
−0.84 0.346ð0.002Þþ0.132

−0.088 4.22ð0.04Þþ0.28
−0.38 0.333ð0.009Þþ0.006

−0.027
125–145 2.32ð0.01Þþ0.74

−0.52 0.191ð0.001Þþ0.074
−0.049 2.44ð0.04Þþ0.06

−0.19 0.173ð0.005Þþ0.003
−0.013

145–165 1.50ð0.01Þþ0.49
−0.34 0.1119ð0.0009Þþ0.0436

−0.0290 1.58ð0.03Þþ0.07
−0.13 0.100ð0.004Þþ0.001

−0.007

165–185 0.996ð0.007Þþ0.325
−0.227 0.0670ð0.0007Þþ0.0263

−0.0175 1.02ð0.02Þþ0.03
−0.08 0.049ð0.005Þþ0.001

−0.008

185–205 0.700ð0.007Þþ0.230
−0.161 0.0423ð0.0005Þþ0.0167

−0.0111 0.75ð0.03Þþ0.04
−0.06 0.038ð0.002Þþ0.000

−0.002

205–225 0.497ð0.005Þþ0.165
−0.115 0.0274ð0.0004Þþ0.0109

−0.0072 0.46ð0.03Þþ0.01
−0.03 0.022ð0.002Þþ0.000

−0.002
225–245 0.356ð0.004Þþ0.119

−0.083 0.0188ð0.0004Þþ0.0075
−0.0050 0.32ð0.02Þþ0.00

−0.01 0.014ð0.001Þþ0.000
−0.001

245–265 0.256ð0.003Þþ0.086
−0.060 0.0129ð0.0003Þþ0.0052

−0.0034 0.24ð0.02Þþ0.00
−0.01 0.007ð0.001Þþ0.001

−0.003

TABLE V. The photon-pair invariant-mass distribution in fb/GeV in γγ þ 2-jet production, as shown in Fig. 13.

LO NLO

mγγ Basic VBF Basic VBF

0–20 0.117ð0.004Þþ0.034
−0.025 0.0052ð0.0003Þþ0.0020

−0.0013 0.23ð0.01Þþ0.05
−0.04 0.008ð0.002Þþ0.003

−0.002
20–40 4.33ð0.03Þþ1.27

−0.92 0.220ð0.002Þþ0.085
−0.056 7.9ð0.4Þþ1.7

−1.3 0.365ð0.007Þþ0.083
−0.066

40–60 7.94ð0.03Þþ2.35
−1.69 0.395ð0.003Þþ0.153

−0.102 11.6ð0.2Þþ1.9
−1.5 0.566ð0.009Þþ0.111

−0.091
60–80 13.57ð0.05Þþ3.98

−2.86 0.616ð0.003Þþ0.240
−0.159 17.0ð0.1Þþ1.9

−1.9 0.80ð0.01Þþ0.12
−0.11

80–100 22.31ð0.07Þþ6.50
−4.69 0.944ð0.004Þþ0.370

−0.245 24.7ð0.3Þþ1.7
−2.1 1.15ð0.03Þþ0.13

−0.15
100–120 20.92ð0.06Þþ6.17

−4.44 0.897ð0.004Þþ0.351
−0.232 23.0ð0.2Þþ1.4

−1.9 1.01ð0.02Þþ0.09
−0.12

120–140 15.76ð0.05Þþ4.73
−3.38 0.706ð0.004Þþ0.276

−0.183 17.2ð0.2Þþ1.0
−1.4 0.82ð0.01Þþ0.08

−0.10
140–160 11.40ð0.04Þþ3.47

−2.47 0.548ð0.003Þþ0.213
−0.141 12.5ð0.1Þþ0.8

−1.1 0.60ð0.01Þþ0.05
−0.07

160–180 8.18ð0.03Þþ2.52
−1.79 0.419ð0.003Þþ0.162

−0.108 8.96ð0.09Þþ0.51
−0.76 0.46ð0.02Þþ0.03

−0.05
180–200 5.96ð0.03Þþ1.86

−1.32 0.333ð0.003Þþ0.128
−0.085 6.6ð0.2Þþ0.4

−0.5 0.354ð0.009Þþ0.024
−0.038

200–220 4.44ð0.02Þþ1.40
−0.99 0.261ð0.003Þþ0.100

−0.067 4.97ð0.07Þþ0.33
−0.46 0.284ð0.006Þþ0.021

−0.030
220–240 3.31ð0.02Þþ1.05

−0.74 0.211ð0.002Þþ0.080
−0.054 3.63ð0.04Þþ0.21

−0.31 0.18ð0.03Þþ0.00
−0.01

240–260 2.56ð0.02Þþ0.82
−0.58 0.175ð0.002Þþ0.066

−0.044 2.92ð0.04Þþ0.20
−0.28 0.184ð0.008Þþ0.006

−0.018
260–280 1.97ð0.01Þþ0.64

−0.45 0.145ð0.001Þþ0.055
−0.037 2.26ð0.03Þþ0.13

−0.20 0.145ð0.005Þþ0.003
−0.011

280–300 1.54ð0.01Þþ0.50
−0.35 0.123ð0.001Þþ0.046

−0.031 1.78ð0.03Þþ0.11
−0.17 0.118ð0.005Þþ0.002

−0.009

TABLE IV. The leading-photon transverse-momentum distribution in fb/GeV in γγ þ 2-jet production, as shown in Fig. 11.

LO NLO

pT Basic VBF Basic VBF

50–70 49.85ð0.09Þþ14.50
−10.46 2.238ð0.006Þþ0.862

−0.573 60.1ð0.3Þþ5.7
−6.0 2.69ð0.03Þþ0.31

−0.35

70–90 29.33ð0.07Þþ8.76
−6.27 1.436ð0.005Þþ0.555

−0.368 35.5ð0.3Þþ3.4
−3.6 1.73ð0.04Þþ0.20

−0.22

90–110 18.47ð0.05Þþ5.63
−4.01 0.947ð0.004Þþ0.367

−0.244 21.6ð0.4Þþ1.9
−2.1 1.07ð0.02Þþ0.11

−0.13

110–130 11.65ð0.04Þþ3.61
−2.56 0.634ð0.003Þþ0.246

−0.163 13.0ð0.2Þþ0.8
−1.1 0.73ð0.02Þþ0.06

−0.08

130–150 7.31ð0.04Þþ2.31
−1.63 0.444ð0.003Þþ0.172

−0.114 8.02ð0.09Þþ0.50
−0.74 0.48ð0.01Þþ0.03

−0.05
150–170 4.68ð0.02Þþ1.50

−1.06 0.308ð0.003Þþ0.120
−0.080 5.0ð0.1Þþ0.2

−0.4 0.33ð0.02Þþ0.02
−0.03

170–190 3.02ð0.02Þþ0.99
−0.69 0.219ð0.002Þþ0.085

−0.057 3.22ð0.05Þþ0.14
−0.28 0.216ð0.008Þþ0.008

−0.018

190–210 2.06ð0.02Þþ0.68
−0.47 0.154ð0.002Þþ0.060

−0.040 2.14ð0.03Þþ0.08
−0.17 0.11ð0.03Þþ0.00

−0.01

210–230 1.37ð0.01Þþ0.46
−0.32 0.110ð0.001Þþ0.043

−0.028 1.43ð0.03Þþ0.04
−0.11 0.097ð0.006Þþ0.000

−0.006
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APPENDIX B: TABLES OF DISTRIBUTIONS FOR
ATLAS AND VBF CUTS

In this appendix, we provide tables for distributions
displayed and discussed in Sec. III. All tables show differ-
ential cross sections at both LO and NLO, with numerical
integration uncertainties given in parentheses and scale-
dependence bands indicated by super- and subscripts. We

display results both with the cuts of Eq. (2.13), shown in
columns marked with “ATLAS,” and these cuts supple-
mented by the VBF cuts of Eq. (2.11), shown in columns
marked with “VBF.” In Table VIII, we display the leading-
jet transverse-momentum; in Table IX, we display the
photon-pair transverse-momentum distribution (in
fb/GeV); in Table X, we display the distribution of the

TABLE VI. The dijet invariant-mass distribution in fb/GeV for standard cuts in γγ þ 2-jet production, as shown in
the left plot in Fig. 12.

mjj LO NLO

0–20 0.67ð0.02Þþ0.18
−0.13 0.95ð0.08Þþ0.14

−0.11
20–40 5.26ð0.04Þþ1.46

−1.07 8.4ð0.1Þþ1.5
−1.2

40–60 6.08ð0.03Þþ1.71
−1.25 8.9ð0.1Þþ1.3

−1.1
60–80 9.53ð0.04Þþ2.63

−1.93 12.1ð0.2Þþ1.4
−1.3

80–100 12.53ð0.04Þþ3.47
−2.55 15.5ð0.3Þþ1.7

−1.6
100–120 12.70ð0.04Þþ3.58

−2.61 14.5ð0.3Þþ1.0
−1.2

120–140 11.63ð0.04Þþ3.35
−2.43 12.9ð0.1Þþ0.8

−1.1
140–160 10.08ð0.04Þþ2.95

−2.13 11.5ð0.1Þþ0.9
−1.0

160–180 8.59ð0.03Þþ2.56
−1.84 9.6ð0.1Þþ0.6

−0.9
180–200 7.28ð0.03Þþ2.21

−1.58 8.6ð0.3Þþ0.7
−0.8

200–220 6.20ð0.03Þþ1.91
−1.36 6.4ð0.3Þþ0.3

−0.5
220–240 5.28ð0.03Þþ1.65

−1.17 5.7ð0.1Þþ0.3
−0.5

240–260 4.41ð0.02Þþ1.39
−0.98 5.0ð0.1Þþ0.4

−0.5
260–280 3.80ð0.02Þþ1.21

−0.85 4.2ð0.1Þþ0.3
−0.4

280–300 3.27ð0.02Þþ1.06
−0.74 3.3ð0.1Þþ0.1

−0.3

TABLE VII. The dijet invariant-mass distribution in fb/GeV for VBF cuts in γγ þ 2-jet production, as shown in
the right plot in Fig. 12.

mjj LO NLO

400–420 0.603ð0.004Þþ0.220
−0.149 0.67ð0.06Þþ0.05

−0.07
420–440 0.545ð0.003Þþ0.200

−0.135 0.68ð0.04Þþ0.08
−0.09

440–460 0.490ð0.003Þþ0.181
−0.122 0.55ð0.03Þþ0.04

−0.06
460–480 0.453ð0.003Þþ0.169

−0.114 0.55ð0.03Þþ0.07
−0.07

480–500 0.405ð0.003Þþ0.152
−0.102 0.43ð0.03Þþ0.02

−0.04
500–520 0.363ð0.002Þþ0.137

−0.092 0.43ð0.02Þþ0.04
−0.05

520–540 0.331ð0.002Þþ0.125
−0.084 0.35ð0.02Þþ0.01

−0.03
540–560 0.303ð0.002Þþ0.115

−0.077 0.36ð0.02Þþ0.03
−0.04

560–580 0.275ð0.002Þþ0.106
−0.070 0.33ð0.01Þþ0.04

−0.04
580–600 0.247ð0.002Þþ0.095

−0.063 0.27ð0.01Þþ0.01
−0.03

600–620 0.228ð0.002Þþ0.088
−0.059 0.28ð0.02Þþ0.03

−0.03

TABLE VIII. The leading-jet transverse-momentum distribution in fb/GeV in γγ þ 2-jet production, as shown in Fig. 9.

LO NLO

pT ATLAS VBF ATLAS VBF

30–50 0.86ð0.01Þþ0.24
−0.18 0.0106ð0.0005Þþ0.0044

−0.0029 0.99ð0.04Þþ0.08
−0.09 0.019ð0.002Þþ0.005

−0.004
50–70 1.10ð0.01Þþ0.32

−0.23 0.0275ð0.0006Þþ0.0112
−0.0073 1.31ð0.05Þþ0.13

−0.14 0.041ð0.002Þþ0.008
−0.007

70–100 0.743ð0.007Þþ0.221
−0.158 0.0350ð0.0005Þþ0.0136

−0.0090 0.80ð0.04Þþ0.04
−0.07 0.038ð0.002Þþ0.003

−0.004

100–140 0.366ð0.004Þþ0.111
−0.079 0.0288ð0.0004Þþ0.0110

−0.0073 0.42ð0.01Þþ0.02
−0.03 0.032ð0.001Þþ0.002

−0.003
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TABLE IX. The photon-pair transverse-momentum distribution, in fb/GeV, in γγ þ 2-jet production, as shown in Fig. 14.

LO NLO

pT ATLAS VBF ATLAS VBF

0–20 0.465ð0.007Þþ0.133
−0.096 0.0140ð0.0003Þþ0.0055

−0.0036 0.42ð0.02Þþ0.00
−0.02 0.016ð0.002Þþ0.002

−0.002

20–30 0.90ð0.01Þþ0.26
−0.19 0.0324ð0.0007Þþ0.0127

−0.0084 0.90ð0.06Þþ0.05
−0.06 0.039ð0.003Þþ0.005

−0.005
30–40 0.97ð0.02Þþ0.28

−0.20 0.0363ð0.0008Þþ0.0141
−0.0093 1.09ð0.07Þþ0.08

−0.10 0.039ð0.004Þþ0.001
−0.004

40–50 0.97ð0.02Þþ0.29
−0.21 0.0392ð0.0009Þþ0.0153

−0.0101 1.05ð0.03Þþ0.07
−0.08 0.044ð0.005Þþ0.005

−0.005
50–60 0.88ð0.01Þþ0.26

−0.19 0.040ð0.001Þþ0.016
−0.010 0.9ð0.1Þþ0.0

−0.1 0.048ð0.005Þþ0.003
−0.005

60–80 0.83ð0.01Þþ0.25
−0.18 0.0361ð0.0007Þþ0.0141

−0.0093 0.93ð0.03Þþ0.06
−0.08 0.039ð0.002Þþ0.003

−0.005
80–100 0.573ð0.008Þþ0.173

−0.123 0.0275ð0.0006Þþ0.0107
−0.0071 0.70ð0.01Þþ0.07

−0.07 0.033ð0.002Þþ0.004
−0.004

100–200 0.133ð0.001Þþ0.041
−0.029 0.0078ð0.0001Þþ0.0030

−0.0020 0.176ð0.003Þþ0.023
−0.022 0.0101ð0.0004Þþ0.0016

−0.0016

TABLE X. The distribution of the absolute value of the photon-pair rapidity, in fb/unit rapidity, in γγ þ 2-jet production, as shown in
Fig. 15.

LO NLO

jyj ATLAS VBF ATLAS VBF

0–0.3 46.0ð0.5Þþ13.5
−9.7 1.44ð0.02Þþ0.55

−0.37 53.8ð0.9Þþ4.1
−4.9 2.04ð0.07Þþ0.39

−0.31

0.3–0.65 46.1ð0.4Þþ13.5
−9.7 1.57ð0.02Þþ0.60

−0.40 54ð2Þþ4
−5 2.18ð0.08Þþ0.41

−0.35

0.65–1 47.9ð0.5Þþ14.1
−10.1 1.92ð0.04Þþ0.73

−0.49 56ð1Þþ5
−5 2.38ð0.09Þþ0.31

−0.35

1–1.4 47.4ð0.5Þþ14.1
−10.1 2.14ð0.03Þþ0.83

−0.55 53ð1Þþ4
−5 2.6ð0.1Þþ0.3

−0.3

1.4–2.4 23.6ð0.3Þþ7.2
−5.2 1.41ð0.02Þþ0.56

−0.37 25ð1Þþ1
−2 1.36ð0.07Þþ0.03

−0.12

TABLE XI. The distribution of the j cos θ�j variable defined in Eq. (2.19), in fb, in γγ þ 2-jet production, as shown in Fig. 16.

LO NLO

j cos θ�j ATLAS VBF ATLAS VBF

0–0.1 111ð1Þþ33
−24 5.5ð0.1Þþ2.2

−1.4 116ð11Þþ4
−7 5.6ð0.4Þþ0.2

−0.6
0.1–0.2 113ð2Þþ34

−24 5.2ð0.1Þþ2.0
−1.4 117ð3Þþ5

−8 5.6ð0.4Þþ0.4
−0.6

0.2–0.3 106ð1Þþ32
−23 4.7ð0.1Þþ1.9

−1.2 116ð3Þþ6
−9 5.0ð0.3Þþ0.5

−0.5
0.3–0.4 103ð1Þþ31

−22 4.55ð0.09Þþ1.78
−1.18 120ð8Þþ10

−12 5.3ð0.4Þþ0.3
−0.6

0.4–0.5 102ð2Þþ30
−22 4.2ð0.1Þþ1.7

−1.1 111ð3Þþ8
−9 5.0ð0.3Þþ0.5

−0.6
0.5–0.6 100ð1Þþ30

−21 3.92ð0.08Þþ1.53
−1.01 110ð3Þþ7

−9 4.8ð0.3Þþ0.6
−0.6

0.6–0.7 97ð1Þþ28
−20 3.61ð0.08Þþ1.40

−0.93 106ð5Þþ8
−10 4.8ð0.3Þþ0.7

−0.7

0.7–0.8 84ð2Þþ25
−18 3.4ð0.1Þþ1.3

−0.9 97ð3Þþ9
−9 4.3ð0.2Þþ0.7

−0.7

0.8–0.9 40.5ð0.9Þþ12.4
−8.8 2.01ð0.05Þþ0.77

−0.51 59ð3Þþ7
−7 2.5ð0.2Þþ0.5

−0.4
0.9–1 35.8ð0.7Þþ10.9

−7.7 1.91ð0.04Þþ0.73
−0.49 53ð1Þþ8

−7 3.1ð0.2Þþ0.7
−0.5

TABLE XII. The distribution of the azimuthal angle difference between the two leading jets, in fb/radian, in γγ þ 2-jet production, as
shown in Fig. 17.

LO NLO

Δϕjj ATLAS VBF ATLAS VBF

0� π
3 10.2ð0.2Þþ3.0

−2.2 0.22ð0.01Þþ0.09
−0.06 15.6ð0.4Þþ2.6

−2.2 0.44ð0.03Þþ0.13
−0.09

π
3
� 2π

3 17.1ð0.2Þþ5.1
−3.7 0.61ð0.01Þþ0.24

−0.16 21.2ð0.5Þþ2.3
−2.2 0.93ð0.04Þþ0.20

−0.16
2π
3
� 5π

6 41.7ð0.5Þþ12.5
−8.9 1.90ð0.03Þþ0.74

−0.49 45ð3Þþ3
−4 2.3ð0.1Þþ0.2

−0.3
5π
6
�π 74.1ð0.5Þþ22.1

−15.8 3.90ð0.04Þþ1.51
−1.00 73ð3Þþ1

−5 3.7ð0.1Þþ0.1
−0.3
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absolute value of the photon-pair rapidity (in fb/unit
rapidity); in Table XI, we display the distribution in
j cos θ�j as defined in Eq. (2.19) (in fb); and in Table XII,
we display the distribution of the dijet azimuthal-angle
difference (in fb/radian) between the two leading jets.

APPENDIX C: TABLES OF DISTRIBUTIONS FOR
CMS AND VBF CUTS

In this appendix, we provide tables for distributions
displayed and discussed in Sec. III. All tables show
differential cross sections at both LO and NLO, with

numerical integration uncertainties given in parentheses
and scale-dependence bands indicated by super- and sub-
scripts. We display results both with the cuts of Eq. (2.14),
shown in columns marked with “CMS,” and these cuts
supplemented by the VBF cuts of Eq. (2.16), shown in
columns marked with “VBF.” In Table XIII, we display the
distribution of the invariant mass of the photon pair, in
fb/GeV; in Table XIV, we display the distribution of the
absolute value of the photon-pair rapidity (in fb/unit
rapidity); and in Table XV, we display the distribution of
the dijet azimuthal-angle difference (in fb/radian) between
the two leading jets.

TABLE XV. The distribution of the azimuthal angle difference between the two leading jets, in fb/radian, in γγ þ 2-jet production, as
shown in Fig. 20.

LO NLO

Δϕjj CMS VBF CMS VBF

0– π
3 101.0ð0.5Þþ29.7

−21.4 1.18ð0.02Þþ0.48
−0.31 134ð1Þþ17

−16 2.54ð0.06Þþ0.79
−0.55

π
3
– 2π

3 147.4ð0.5Þþ43.5
−31.3 2.59ð0.02Þþ1.04

−0.68 170ð2Þþ13
−16 4.39ð0.09Þþ1.06

−0.81
2π
3
– 5π

6 264.2ð0.9Þþ78.1
−56.2 6.30ð0.04Þþ2.48

−1.64 251ð4Þþ2
−13 6.9ð0.2Þþ0.6

−0.8
5π
6
–π 335.1ð0.9Þþ100.2

−71.8 8.77ð0.05Þþ3.43
−2.27 277ð3Þþ0

−18 7.4ð0.2Þþ0.0
−0.4

TABLE XIV. The distribution of the absolute value of the photon-pair rapidity, in fb/unit rapidity, in γγ þ 2-jet production, as shown in
Fig. 19.

LO NLO

jyj CMS VBF CMS VBF

0–0.3 320ð1Þþ94
−68 6.40ð0.05Þþ2.54

−1.68 345ð2Þþ14
−25 8.8ð0.2Þþ1.5

−1.3

0.3–0.65 307ð1Þþ90
−65 6.42ð0.04Þþ2.53

−1.67 331ð3Þþ14
−25 8.9ð0.3Þþ1.6

−1.4

0.65–1 297ð1Þþ87
−63 6.59ð0.05Þþ2.58

−1.71 315ð2Þþ13
−23 8.8ð0.2Þþ1.5

−1.3
1–1.4 276ð1Þþ81

−58 6.09ð0.05Þþ2.39
−1.58 285ð3Þþ9

−20 7.4ð0.2Þþ1.0
−1.0

1.4–2.4 155.0ð0.7Þþ46.7
−33.5 2.91ð0.03Þþ1.16

−0.77 151ð2Þþ4
−11 2.91ð0.09Þþ0.14

−0.28

TABLE XIII. The distribution of the invariant mass of the photon pair in fb/GeV in γγ þ 2-jet production, as shown in Fig. 18.

LO NLO

mγγ CMS VBF CMS VBF

100–110 13.02ð0.05Þþ3.76
−2.72 0.230ð0.002Þþ0.091

−0.060 13.1ð0.1Þþ0.4
−0.9 0.282ð0.008Þþ0.040

−0.039

110–120 10.73ð0.05Þþ3.13
−2.26 0.201ð0.002Þþ0.080

−0.053 10.9ð0.1Þþ0.3
−0.8 0.251ð0.007Þþ0.037

−0.036

120–130 8.82ð0.04Þþ2.60
−1.87 0.174ð0.002Þþ0.069

−0.045 9.3ð0.1Þþ0.4
−0.6 0.218ð0.006Þþ0.028

−0.030

130–140 7.11ð0.03Þþ2.12
−1.52 0.150ð0.002Þþ0.059

−0.039 7.53ð0.08Þþ0.29
−0.56 0.188ð0.005Þþ0.025

−0.025
140–150 5.83ð0.03Þþ1.76

−1.26 0.129ð0.001Þþ0.051
−0.034 6.23ð0.07Þþ0.31

−0.48 0.172ð0.004Þþ0.028
−0.026

150–160 4.79ð0.03Þþ1.46
−1.04 0.115ð0.001Þþ0.045

−0.030 4.90ð0.07Þþ0.17
−0.36 0.140ð0.009Þþ0.021

−0.019

160–170 3.88ð0.02Þþ1.19
−0.85 0.098ð0.001Þþ0.039

−0.026 4.18ð0.05Þþ0.17
−0.32 0.121ð0.006Þþ0.018

−0.016

170–180 3.20ð0.02Þþ0.99
−0.70 0.086ð0.001Þþ0.034

−0.022 3.43ð0.05Þþ0.13
−0.27 0.100ð0.004Þþ0.008

−0.011
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APPENDIX D: VIRTUAL MATRIX ELEMENTS
AT A POINT IN PHASE SPACE

In this appendix, we provide reference values of virtual
matrix elements. We provide values for the independent
matrix elements in γγ þ 2-jet production at the same
point in phase-space as given in Eq. (9.1) of Ref. [42]
with the scale parameter μ ¼ MZ ¼ 91.188 GeV for
both renormalization and factorization scales, with
αsðMZÞ ¼ 0.120 and αEMð0Þ ¼ 1=137 to the required
precision. We show these values in Table XVI. All other
matrix elements are obtained from these by crossing and by
adjusting the electromagnetic charges of the quarks
appropriately.
For all matrix elements with nonvanishing tree-level

values, we quote the values for the ratio of the virtual
corrections to the tree-level squared matrix element, fol-
lowing Ref. [13]. We quote the value of the ratio,

cdσð1ÞV ≡ 1

8παScΓðϵÞ
dσð1ÞV

dσð0Þ
; ðD1Þ

where we have also separated out the dependence on the
strong coupling αs and the overall factor cΓðϵÞ, defined by

cΓðϵÞ ¼
1

ð4πÞ2−ϵ
Γð1þ ϵÞΓ2ð1 − ϵÞ

Γð1 − 2ϵÞ : ðD2Þ

In the second column of Table XVI, we give the value of the
tree-level matrix element squared for the indicated
subprocess.
For the ð1g2g → 3γ4γ5g6gÞ subprocess, we give the finite

part of the one-loop squared matrix elements dσOLS dressed
with couplings and factors of cΓðϵÞ directly, because the
associated tree-level amplitudes vanish, and poles in 1=ϵ
are absent.
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TABLE XVI. The virtual matrix elements at the point in phase space used in Ref. [42]. The first column labels the subprocess, and the
second gives the tree-level squared matrix element. The third, fourth, and fifth columns give, respectively, the 1=ϵ2, 1=ϵ, and finite

contributions to the normalized virtual matrix element cdσð1ÞV , following the conventions in Ref. [13]. For the subprocess
ð1g2g → 3γ4γ5g6gÞ, the finite parts of the one-loop squared amplitudes dσOLS are given directly. Our conventions, as well as the
values of the scale parameters and couplings, are given in the main text of this appendix.

cdσð1ÞV
Tree level 1=ϵ2 1=ϵ Finite

1g2g → 3γ4γ5d6d̄ 3.722387496 × 10−5 −8.666666667 −30.997687242 −29.978172584
1d2d̄ → 3γ4γ5u6ū 1.726257408 × 10−7 −5.333333333 −15.845128704 −12.304984940
1d2d̄ → 3γ4γ5d6d̄ 2.344204568 × 10−5 −5.333333333 −15.947959115 7.0934319706

dσOLS � � � � � � � � � Finite
1g2g → 3γ4γ5g6g � � � � � � � � � 9.0522165549 × 10−4
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