8 research outputs found

    Crisponi syndrome/cold-induced sweating syndrome type 2: Reprogramming of CS/CISS2 individual derived fibroblasts into three clones of one iPSC line

    Get PDF
    Crisponi syndrome/cold-induced sweating syndrome type 2 (CS/CISS2) is a rare disease with severe dysfunctions of thermoregulatory processes. CS/CISS2 individuals suffer from recurrent episodes of hyperthermia in the neonatal period and paradoxical sweating at cold ambient temperatures in adolescence. Variants in CLCF1 (cardiotrophin-like-cytokine 1) cause CS/CISS2. Here, we summarize the generation of three clones of one stem cell line (iPSC) of a CS/CISS2 individual carrying the CLCF1 variant c.321C>G on both alleles. These patient derived iPSC clones show a normal karyotype, several pluripotency markers, and the ability to differentiate into the three germ layers

    Randomization of Left-right Asymmetry and Congenital Heart Defects: The Role of DNAH5 in Humans and Mice

    Full text link
    Background - Nearly one in 100 live births presents with congenital heart defects (CHD). CHD are frequently associated with laterality defects, such as situs inversus totalis (SIT), a mirrored positioning of internal organs. Body laterality is established by a complex process: monocilia at the embryonic left-right organizer (LRO) facilitate both the generation and sensing of a leftward fluid flow. This induces the conserved left-sided Nodal signaling cascade to initiate asymmetric organogenesis. Primary ciliary dyskinesia (PCD) originates from dysfunction of motile cilia, causing symptoms such as chronic sinusitis, bronchiectasis and frequently SIT. The most frequently mutated gene in PCD, DNAH5 is associated with randomization of body asymmetry resulting in SIT in half of the patients; however, its relation to CHD occurrence in humans has not been investigated in detail so far. Methods - We performed genotype / phenotype correlations in 132 PCD patients carrying disease-causing DNAH5 mutations, focusing on situs defects and CHD. Using high speed video microscopy-, immunofluorescence-, and in situ hybridization analyses, we investigated the initial steps of left-right axis establishment in embryos of a Dnah5 mutant mouse model. Results - 65.9% (87 / 132) of the PCD patients carrying disease-causing DNAH5 mutations had laterality defects: 88.5% (77 / 87) presented with SIT, 11.5% (10 / 87) presented with situs ambiguus; and 6.1% (8 / 132) presented with CHD. In Dnah5mut/mut^{mut/mut} mice, embryonic LRO monocilia lack outer dynein arms resulting in immotile cilia, impaired flow at the LRO, and randomization of Nodal signaling with normal, reversed or bilateral expression of key molecules. Conclusions - For the first time, we directly demonstrate the disease-mechanism of laterality defects linked to DNAH5 deficiency at the molecular level during embryogenesis. We highlight that mutations in DNAH5 are not only associated with classical randomization of left-right body asymmetry but also with severe laterality defects including CHD

    Validation of a Comprehensive Set of Pruritus Assessment Instruments: The Chronic Pruritus Tools Questionnaire PRURITOOLS

    Full text link
    Few studies have validated standard measurement instruments for evaluation of chronic pruritus. The Chronic Pruritus Tools Questionnaire PRURITOOLS assembles a set of instruments for the assessment of pruritus, such as the visual analogue scale (horizontal 100-mm line), numerical rating scale (0–10), verbal rating scale, and information on pruritus quality and improvement during therapy. This study, with 40 subjects, analysed PRURITOOLS regarding convergent validity and test–retest reliability (60 min), followed by a feasibility questionnaire. Test–retest reliability for PRURITOOLS items was excellent (intraclass correlation coefficient 0.84–1). Strong to very strong correlations between the pruritus intensity scales indicated convergent validity. The feasibility questionnaire showed an overall acceptance of PRURITOOLS, and the majority of subjects (82.5%) considered it an appropriate questionnaire to measure pruritus. In conclusion, PRURITOOLS offers validated tools for rapid pruritus assessment in routine care or endpoints of clinical trials

    Mutations in PIH1D3 Cause X-Linked Primary Ciliary Dyskinesia with Outer and Inner Dynein Arm Defects

    No full text
    Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right body axis disturbance. Here we report maternally inherited and de novo mutations in PIH1D3 in four men affected with PCD. PIH1D3 is located on the X chromosome and is involved in the preassembly of both outer (ODA) and inner (IDA) dynein arms of cilia and sperm flagella. Loss-of-function mutations in PIH1D3 lead to absent ODAs and reduced to absent IDAs, causing ciliary and flagellar immotility. Further, PIH1D3 interacts and co-precipitates with cytoplasmic ODA/IDA assembly factors DNAAF2 and DNAAF4. This result has clinical and genetic counseling implications for genetically unsolved male case subjects with a classic PCD phenotype that lack additional phenotypes such as intellectual disability or retinitis pigmentosa

    Mutations in C11orf70 Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry Due to Defects of Outer and Inner Dynein Arms

    No full text
    Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling
    corecore