14 research outputs found

    Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera

    Get PDF
    Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies. The strongest positive population trends were observed for the minority of species (15%) that both advanced flight phenology and shifted their northern range boundaries northward. We show that, for boreal Lepidoptera, a combination of phenology and range shifts is the most viable strategy under a changing climate. Effectively, this may divide species into winners and losers based on their propensity to capitalize on this combination, with potentially large consequences on future community composition.Peer reviewe

    Coming to Terms with the Concept of Moving Species Threatened by Climate Change - A Systematic Review of the Terminology and Definitions

    Get PDF
    Intentional moving of species threatened by climate change is actively being discussed as a conservation approach. The debate, empirical studies, and policy development, however, are impeded by an inconsistent articulation of the idea. The discrepancy is demonstrated by the varying use of terms, such as assisted migration, assisted colonisation, or managed relocation, and their multiple definitions. Since this conservation approach is novel, and may for instance lead to legislative changes, it is important to aim for terminological consistency. The objective of this study is to analyse the suitability of terms and definitions used when discussing the moving of organisms as a response to climate change. An extensive literature search and review of the material (868 scientific publications) was conducted for finding hitherto used terms (N = 40) and definitions (N = 75), and these were analysed for their suitability. Based on the findings, it is argued that an appropriate term for a conservation approach relating to aiding the movement of organisms harmed by climate change is assisted migration defined as follows: Assisted migration means safeguarding biological diversity through the translocation of representatives of a species or population harmed by climate change to an area outside the indigenous range of that unit where it would be predicted to move as climate changes, were it not for anthropogenic dispersal barriers or lack of time. The differences between assisted migration and other conservation translocations are also discussed. A wide adoption of the clear and distinctive term and definition provided would allow more focused research on the topic and enable consistent implementation as practitioners could have the same understanding of the concept.Peer reviewe

    Shifts in timing and duration of breeding for 73 boreal bird species over four decades

    Get PDF
    Breeding timed to match optimal resource abundance is vital for the successful reproduction of species, and breeding is therefore sensitive to environmental cues. As the timing of breeding shifts with a changing climate, this may not only affect the onset of breeding but also its termination, and thus the length of the breeding period. We use an extensive dataset of over 820K nesting records of 73 bird species across the boreal region in Finland to probe for changes in the beginning, end, and duration of the breeding period over four decades (1975 to 2017). We uncover a general advance of breeding with a strong phylogenetic signal but no systematic variation over space. Additionally, 31% of species contracted their breeding period in at least one bioclimatic zone, as the end of the breeding period advanced more than the beginning. We did not detect a statistical difference in phenological responses of species with combinations of different migratory strategy or number of broods. Nonetheless, we find systematic differences in species responses, as the contraction in the breeding period was found almost exclusively in resident and short-distance migrating species, which generally breed early in the season. Overall, changes in the timing and duration of reproduction may potentially lead to more broods co-occurring in the early breeding season-a critical time for species' reproductive success. Our findings highlight the importance of quantifying phenological change across species and over the entire season to reveal shifts in the community-level distribution of bird reproduction.Peer reviewe

    Climate change reshuffles northern species within their niches

    Get PDF
    Climate change is a pervasive threat to biodiversity. While range shifts are a known consequence of climate warming contributing to regional community change, less is known about how species' positions shift within their climatic niches. Furthermore, whether the relative importance of different climatic variables prompting such shifts varies with changing climate remains unclear. Here we analysed four decades of data for 1,478 species of birds, mammals, butterflies, moths, plants and phytoplankton along a 1,200 km high latitudinal gradient. The relative importance of climatic drivers varied non-uniformly with progressing climate change. While species turnover among decades was limited, the relative position of species within their climatic niche shifted substantially. A greater proportion of species responded to climatic change at higher latitudes, where changes were stronger. These diverging climate imprints restructure a full biome, making it difficult to generalize biodiversity responses and raising concerns about ecosystem integrity in the face of accelerating climate change.The authors analyse four decades of distribution data for various taxonomic groups to understand the shift of species within their climatic niches and the changing influences of different climate factors. The diverse and diverging climate imprints raise concerns about future ecosystem integrity.</p

    Number of publications mentioning a term for the measure.

    No full text
    <p>Number of publications per year (1994–2012) in which a term was mentioned for the measure entailing intentional human-mediated dispersal of organisms. The total number of publications mentioning a term was 868.</p

    Number of times the three most common terms were used.

    No full text
    <p>Number of times the three most common terms denoting a conservation measure entailing intentional human-mediated dispersal of organisms in response to climate change were used as compared to other terms. AM  =  assisted migration; AC  =  assisted colonization; MR  =  managed relocation; Other  =  all other terms found in the literature search (N = 39; see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102979#pone-0102979-t001" target="_blank">Table 1</a>).</p

    Definitions and a model of translocation concepts.

    No full text
    <p>According to the IUCN <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102979#pone.0102979-IUCN2" target="_blank">[45]</a>, <i>translocation</i> is defined as the movement of living organisms from one area with free release in another.</p

    Mixed effects of a national protected area network on terrestrial and freshwater biodiversity

    No full text
    Abstract Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland. We find mixed impacts of protected areas, with only a small proportion of species explicitly benefiting from protection—mainly through slower rates of decline inside protected areas. The benefits of protection are enhanced for larger protected areas and are traceable to when the sites were protected, but are mostly unrelated to species conservation status or traits (size, climatic niche and threat status). Our results suggest that the current protected area network can partly contribute to slow down declines in occupancy rates, but alone will not suffice to halt the biodiversity crisis. Efforts aimed at improving coverage, connectivity and management will be key to enhance the effectiveness of protected areas towards bending the curve of biodiversity loss
    corecore