9 research outputs found

    Does belowground interaction with <em>Fagus sylvatica</em> increase drought susceptibility of photosynthesis and stem growth in <em>Picea abies</em>?

    No full text
    Mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) frequently over-yield, when compared to respective monospecific stands. Over-yielding is attributed to enhanced resource uptake efficiency through niche complementarity alleviating species competition, for example through enhanced root stratification in mixture. Under severe and frequent summer drought, however, water limitation may become crucial in modifying the prevailing competitive interaction in mixed beech-spruce forests. We hypothesize, therefore, that under drought (H I) inter-specific interaction with beech reduces water accessibility for spruce more than intra-specific conditions, thus (H II) exacerbating drought susceptibility of spruce in terms of reduced photosynthesis and stem growth. Reactions at the organ (leaf, fine root), tree and stand scale were analysed in a mature forest with beech-spruce group mixture. Under inter-specific conditions spruce&#39;s fine-root production and depth of water uptake (assessed via &delta;18O of xylem water) shifted to shallow, drought-prone soil horizons, in agreement with H I. Overall, lowered fine root production and ramification along with a reduction in long-distance explorative ectomycorrhizal types resulted in decreased soil exploitation in spruce when growing together with beech. Spruce&#39;s drought sensitivity was exemplified by a distinct decrease in stomatal conductance, net CO2 uptake rate and stem growth during periods of water limitation. Notwithstanding, species interaction effects were absent in leaf gas exchange and stem diameter growth, during a six-week summer drought period in 2013 as well as in the extremely dry year of 2003, hence rejecting H II. Based on results from soil moisture measurements and water uptake depth, we interpret the conflicting findings for H I and H II to result from: (i) seasonal shifts between positive (during spring drought) and negative (during summer drought) effects of beech neighbourhood on soil water availability for spruce, possibly overriding each other in their effect on annual stem diameter growth and (ii) the group-wise mixture pattern, where spruce is exposed to competition with beech only along group edges, i.e. laterally only, so that the putatively adverse beech effect on water accessibility stays limited. Our results suggest, compared to single tree mixture, group-wise mixture of beech and spruce to be a favourable silvicultural option in the face of climate change

    The BAYSOFI Campaign - Measurements Carried out during the Total Solar Eclipse of August 11, 1999

    No full text
    The total solar eclipse of August 11, 1999 provided a unique opportunity to observe the input of fast day-night and night-day transitions, under high solar elevation around noon, on the earth-atmosphere-biosphere system. Within the interdisciplinary field campaign BAYSOFI, measurements of radiation, boundary layer micrometeorology and photochemistry, photosynthesis and transpiration were carried out at Freising-Weihenstephan and several locations nearby focusing on short-term effects of the eclipse. Although the overall grosswetterlage on August 11 was not favourable for viewing the eclipse, with clouds covering most of central Europe, observational conditions at Weihenstephan were fair due to a large hole in the cloud layer which appeared just half hour before totality lasting for more than one hour. Thus significant effects of the eclipse on radiation, photolysis rates, OH, the temperature, wind, turbulence structure and stratification, ozone and CO2 fluxes, photosynthesis, transpiration and sap flow of trees could be observed which are reported and discussed in the following sequence of papers

    The Kroof experiment: Realization and efficacy of a recurrent drought experiment plus recovery in a beech/spruce forest.

    No full text
    Forest ecosystems play a central role in global water and carbon cycles, yet the impact of global climate change, in particular drought, on trees and forests is poorly understood. Therefore, there is an urgent need for forest-scale experiments in improving our understanding of trees’ responses to extreme drought events and subsequent recovery under field conditions. Here, we present the design and efficacy of a novel throughfall exclusion experiment with retractable roofs in a mature forest allowing for flexible drought and recovery periods. A total of 12 plots (144&nbsp;±&nbsp;26 m on average) with 3–7 European beech and Norway spruce trees each were established by root trenching to a depth of one meter, four years prior to the experiment. Subsequent installation of roofs (n&nbsp;=&nbsp;6) allowed for the removal of throughfall precipitation and almost a complete non-availability of soil water in the upper 70&nbsp;cm during five subsequent growing seasons, that is, 2014–2018. This reduction in available soil water resulted in pre-dawn leaf water potentials down to&nbsp;−1.8&nbsp;MPa in mature trees. Stem diameter growth decreased by 30% in beech and 70% in spruce, and fine root abundance was reduced by 57% in beech and 73% in spruce compared with controls. After only one growing season, the mycorrhizal community composition changed in response to drought. Careful watering of hydrophobic forest soils in early summer of 2019 resulted in recovered pre-dawn leaf water potentials of drought-stressed trees within one week. Recovery of stem diameter growth, however, did not occur within the same growing season and remained reduced by 33% in beech and 69% in spruce compared with controls. The implemented throughfall exclusion system imposed recurrent seasonal drought events on a mature beech/spruce forest with high efficacy. Shifts in community composition of mycorrhizae in parallel to tree growth decline advocate for a more holistic view on forest-scale drought and watering experiments, particularly in light of more frequently predicted drought events in future. The perennial nature of mature trees and their subsequent slow recovery from drought, that is, over multiple growing seasons, argues for more long-term experiments that span several years

    Evidence against a charge density wave on Bi(111)

    Get PDF
    The Bi(111) surface was studied by scanning tunneling microscopy (STM), transmission electron microscopy (TEM) and angle-resolved photoemission (ARPES) in order to verify the existence of a recently proposed surface charge density wave (CDW) [Ch. R. Ast and H. Hoechst Phys. Rev. Lett. 90, 016403 (2003)]. The STM and TEM results to not support a CDW scenario at low temperatures. Furthermore, the quasiparticle interference pattern observed in STM confirms the spin-orbit split character of the surface states which prevents the formation of a CDW, even in the case of good nesting. The dispersion of the electronic states observed with ARPES agrees well with earlier findings. In particular, the Fermi contour of the electron pocket at the centre of the surface Brillouin zone is found to have a hexagonal shape. However, no gap opening or other signatures of a CDW phase transition can be found in the temperature-dependent data

    GERMANIUM ORGANOMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

    No full text

    Transport of organic anions across the basolateral membrane of proximal tubule cells

    No full text
    corecore