56 research outputs found

    The Whole Antarctic Ocean Model (WAOM v1.0): Development and evaluation

    Get PDF
    The Regional Ocean Modeling System (ROMS), including an ice shelf component, has been applied on a circum-Antarctic domain to derive estimates of ice shelf basal melting. Significant improvements made compared to previous models of this scale are the inclusion of tides and a horizontal spatial resolution of 2 km, which is sufficient to resolve on-shelf heat transport by bathymetric troughs and eddy-scale circulation. We run the model with ocean–atmosphere–sea ice conditions from the year 2007 to represent nominal present-day climate. We force the ocean surface with buoyancy fluxes derived from sea ice concentration observations and wind stress from ERA-Interim atmospheric reanalysis. Boundary conditions are derived from the ECCO2 ocean state estimate; tides are incorporated as sea surface height and barotropic currents at the open boundary. We evaluate model results using satellite-derived estimates of ice shelf melting and established compilations of ocean hydrography. The Whole Antarctic Ocean Model (WAOM v1.0) qualitatively captures the broad scale difference between warm and cold regimes as well as many of the known characteristics of regional ice–ocean interaction. We identify a cold bias for some warm-water ice shelves and a lack of high-salinity shelf water (HSSW) formation. We conclude that further calibration and development of our approach are justified. At its current state, the model is ideal for addressing specific, process-oriented questions, e.g. related to tide-driven ice shelf melting at large scales

    Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet-ocean model using FISOC (v1.1) - ROMSIceShelf (v1.0) - Elmer/Ice (v9.0)

    Get PDF
    Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∌0.7 m yr−1 and approximate period of ∌6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models

    Vertical Processes and Resolution Impact Ice Shelf Basal Melting: A Multi-Model Study

    Get PDF
    Understanding ice shelf–ocean interaction is fundamental to projecting the Antarctic ice sheet response to a warming climate. Numerical ice shelf–ocean models are a powerful tool for simulating this interaction, yet are limited by inherent model weaknesses and scarce observations, leading to parameterisations that are unverified and unvalidated below ice shelves. We explore how different models simulate ice shelf–ocean interaction using the 2nd Ice Shelf–Ocean Model Intercomparison Project (ISOMIP+) framework. Vertical discretisation and resolution of the ocean model are shown to have a significant effect on ice shelf basal melt rate, through differences in the distribution of meltwater fluxes and the calculation of thermal driving. Z-coordinate models, which generally have coarser vertical resolution in ice shelf cavities, may simulate higher melt rates compared to terrain-following coordinate models. This is due to the typically higher resolution of the ice–ocean boundary layer region in terrain following models, which allows better representation of a thin meltwater layer, increased stratification, and as a result, better insulation of the ice from water below. We show that a terrain-following model, a z-level coordinate model and a hybrid approach give similar results when the effective vertical resolution adjacent to the ice shelf base is similar, despite each model employing different paradigms for distributing meltwater fluxes and sampling tracers for melting. We provide a benchmark for thermodynamic ice shelf–ocean interaction with different model vertical coordinates and vertical resolutions, and suggest a framework for any future ice shelf–ocean thermodynamic parameterisations

    Spatial immune profiling of the colorectal tumor microenvironment predicts good outcome in stage II patients

    Get PDF
    This study was funded by Medical Research Scotland and Indica Labs, Inc., who also provided in-kind resource.Cellular subpopulations within the colorectal tumor microenvironment (TME) include CD3+ and CD8+ lymphocytes, CD68+ and CD163+ macrophages, and tumor buds (TBs), all of which have known prognostic significance in stage II colorectal cancer. However, the prognostic relevance of their spatial interactions remains unknown. Here, by applying automated image analysis and machine learning approaches, we evaluate the prognostic significance of these cellular subpopulations and their spatial interactions. Resultant data, from a training cohort retrospectively collated from Edinburgh, UK hospitals (n = 113), were used to create a combinatorial prognostic model, which identified a subpopulation of patients who exhibit 100% survival over a 5-year follow-up period. The combinatorial model integrated lymphocytic infiltration, the number of lymphocytes within 50-ÎŒm proximity to TBs, and the CD68+/CD163+ macrophage ratio. This finding was confirmed on an independent validation cohort, which included patients treated in Japan and Scotland (n = 117). This work shows that by analyzing multiple cellular subpopulations from the complex TME, it is possible to identify patients for whom surgical resection alone may be curative.Publisher PDFPeer reviewe

    Modelling the Response of Ice Shelf Basal Melting to Different Ocean Cavity Environmental Regimes

    Get PDF
    We present simulation results from a version of the Regional Ocean Modeling System modified for ice shelf/ocean interaction, including the parameterisation of basal melting by molecular diffusion alone. Simulations investigate the differences in melting for an idealised ice shelf experiencing a range of cold to hot ocean cavity conditions. Both the pattern of melt and the location of maximum melt shift due to changes in the buoyancy-driven circulation, in a different way to previous studies. Tidal forcing increases both the circulation strength and melting, with the strongest impact on the cold cavity case. Our results highlight the importance of including a complete melt parameterisation and tidal forcing. In response to the 2.4 degrees C ocean warming initially applied to a cold cavity ice shelf, we find that melting will increase by about an order of magnitude (24 x with tides and 41 x without tides)

    Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media

    Get PDF
    Cylindrical block copolymer micelles have shown considerable promise in various fields of biomedical research. However, unlike spherical micelles and vesicles, control over their dimensions in biologically relevant solvents has posed a key challenge that potentially limits in depth studies and their optimization for applications. Here, we report the preparation of cylindrical micelles of length in the wide range of 70 nm to 1.10 ÎŒm in aqueous media with narrow length distributions (length polydispersities <1.10). In our approach, an amphiphilic linear-brush block copolymer, with high potential for functionalization, was synthesized based on poly­(ferrocenyldimethylsilane)-<i>b</i>-poly­(allyl glycidyl ether) (PFS-<i>b</i>-PAGE) decorated with triethylene glycol (TEG), abbreviated as PFS-<i>b</i>-(PEO-<i>g</i>-TEG). PFS-<i>b</i>-(PEO-<i>g</i>-TEG) cylindrical micelles of controlled length with low polydispersities were prepared in <i>N</i>,<i>N</i>-dimethylformamide using small seed initiators via living crystallization-driven self-assembly. Successful dispersion of these micelles into aqueous media was achieved by dialysis against deionized water. Furthermore, B–A–B amphiphilic triblock comicelles with PFS-<i>b</i>-poly­(2-vinylpyridine) (P2VP) as hydrophobic “B” blocks and hydrophilic PFS-<i>b</i>-(PEO-<i>g</i>-TEG) “A” segments were prepared and their hierarchical self-assembly in aqueous media studied. It was found that superstructures formed are dependent on the length of the hydrophobic blocks. Quaternization of P2VP was shown to cause the disassembly of the superstructures, resulting in the first examples of water-soluble cylindrical multiblock comicelles. We also demonstrate the ability of the triblock comicelles with quaternized terminal segments to complex DNA and, thus, to potentially function as gene vectors

    Installation and operational effects of a HVDC submarine cable in a continental shelf setting: Bass Strait, Australia

    Get PDF
    Despite the many submarine telecommunications and power cables laid world-wide there are fewer than ten published studies of theirenvironmental effects in the refereed literature. This paper describes an investigation into the effects of laying and operating the BasslinkHigh Voltage Direct Current (HVDC) cable and its associated metallic return cable across Bass Strait in South East Australia. Over morethan 95% of its length the cable was directly laid into a wet jetted trench given the predominantly soft sediments encountered. Underwaterremote video investigations found that within two years all visible evidence of the cable and trench was gone at over a third of the transectsat six deep water sites (32&ndash;72 m deep). At other deep water transects the residual trench trapped drift material providing habitat for thegenerally sparsely distributed benthic community. Diver surveys at both of the near shore sites (&lt;15 m deep) on the northern side of theStrait also found the cable route was undetectable after a year. On the southern side, where the cable traversed hard basalt rock near shore,it was encased in a protective cast iron half shell. Ecological studies by divers over 3.5 years demonstrated the colonization of the hard shellby similar species occupying hard substrates elsewhere on the basalt reef. Magnetic field strengths associated with the operating cable werefound to be within 0.8% of those predicted from theory with strength dropping rapidly with distance from the cable. Beyond 20 m the fieldwas indistinguishable from background
    • 

    corecore