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Spatial immune profiling of the colorectal tumor
microenvironment predicts good outcome in stage II patients
Ines P. Nearchou1✉, Bethany M. Gwyther1, Elena C. T. Georgiakakis1, Christos G. Gavriel1, Kate Lillard2, Yoshiki Kajiwara3, Hideki Ueno3,
David J. Harrison1,4 and Peter D. Caie1

Cellular subpopulations within the colorectal tumor microenvironment (TME) include CD3+ and CD8+ lymphocytes, CD68+ and
CD163+ macrophages, and tumor buds (TBs), all of which have known prognostic significance in stage II colorectal cancer.
However, the prognostic relevance of their spatial interactions remains unknown. Here, by applying automated image analysis and
machine learning approaches, we evaluate the prognostic significance of these cellular subpopulations and their spatial
interactions. Resultant data, from a training cohort retrospectively collated from Edinburgh, UK hospitals (n= 113), were used to
create a combinatorial prognostic model, which identified a subpopulation of patients who exhibit 100% survival over a 5-year
follow-up period. The combinatorial model integrated lymphocytic infiltration, the number of lymphocytes within 50-μm proximity
to TBs, and the CD68+/CD163+ macrophage ratio. This finding was confirmed on an independent validation cohort, which included
patients treated in Japan and Scotland (n= 117). This work shows that by analyzing multiple cellular subpopulations from the
complex TME, it is possible to identify patients for whom surgical resection alone may be curative.
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INTRODUCTION
Surgical resection remains the gold standard treatment for stage II
colorectal cancer (CRC) patients1 and results in a 5- year overall
survival of ~80% of the patients2. Adjuvant chemotherapy is only
offered to patients classed as high-risk, based on features
pertaining to the tumor itself, such as tumor differentiation and
vascular or lymphatic invasion3. However, confidently identifying
patients for whom surgical resection alone will be curative, may
require a more complex analysis than analyzing the tumor cells
alone. This is because the tumor microenvironment (TME) plays an
important role in disease progression and thus prognosis4.
A TME that is enriched in T lymphocytes, has been consistently

associated with better patient outcome in CRC5–9. Specifically,
quantification of CD3+ and CD8+ T-cell densities in two discrete
regions of the tumor has been shown to outperform current
tumor risk factors, such as differentiation, venous emboli, and
lymphatic invasion when predicting patient outcome7. Another
key prognostic factor in CRC are tumor buds (TBs)10,11. TBs are
small cancer clusters of up to four cells, which are predominantly
identified within the invasive front of the tumor12. TBs represent
the tumor’s aggressive potential and their presence has been
repeatedly associated with worse prognosis in CRC10,11,13. In
addition, the spatial relationship between T lymphocytes and TBs
was shown to hold prognostic significance in CRC, where patients
with high numbers of lymphocytes surrounding TBs demonstrate
better stage II CRC prognosis14.
Macrophages, a major component of the cellular milieu within

the CRC TME, also play a role in tumor progression15. Macro-
phages’ function include the stimulation of lymphocyte and other
immune cells in order to respond to pathogens16. Within the
tumor setting, macrophages can aid tumor progression, for
example by promoting angiogenesis15,17 and extracellular remo-
deling18, as well as play an antitumorigenic role through the direct

killing of cancer cells19,20 and the recruitment of cytotoxic
lymphocytes21. A number of studies have further shown that
cancer cell signaling can alter the macrophage’s metabolic
structuring mechanisms, which can result to tumor progression
and resistance to therapy22. The prognostic significance of
macrophage infiltration in CRC, is not clear. Some studies have
shown an association of high tumor macrophage density with
improved survival23–25, whereas others associate it with a poor
patient outcome and more aggressive phenotypes26,27. In addi-
tion, a study by Koelzer et al., demonstrated that frequent contact
between TBs and CD68+ macrophages was present in tumors with
adverse pathological findings, such as higher grade and lymph
node metastasis25. Furthermore, in a study by Trumpi et al., it was
found that co-culturing of macrophages with patient-derived
colonospheres promoted tumor budding27.
This study employs automated image analysis and machine

learning to quantify not only the densities of macrophages, TBs,
and tumor infiltrating lymphocytes, but also their spatial inter-
relationships in patient samples derived from Scotland and Japan.
We further investigate their prognostic relevance in stage II CRC.

RESULTS
Patient characteristics
Patients’ clinicopathological characteristics are shown in Table 1.
This study included a training cohort of 113 stage II CRC patients
of which 56 were male and 57 were female, and 87 were
diagnosed with pT3 stage and 26 with pT4 stage disease. Of these
patients, seven rectal cancer patients received neo-adjuvant
treatment and two colon cancer patients, who were positive for
extramural lymphovascular invasion (EMLVI), received adjuvant
treatment. The validation cohort included 117 stage II CRC
patients of which 75 were male and 42 were female. One hundred
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Table 1. Univariate Cox regression analysis for clinicopathological data, SIOI, and SIOI components for the training and validation cohort.

Features Training cohort (n= 113) Validation cohort (n= 117)

Freq (%) HR (95% CI) P Freq (%) HR (95% CI) P

Clinicopathological

Age 1.447 (0.771–2.715) 0.250 1.499 (0.921–2.440) 0.103

≤70 45 (39.8) 63 (53.8)

71–79 32 28.3) 32 (27.4)

≥80 36 (31.9) 22 (18.8)

Gender 0.829 (0.301–2.287) 0.717 0.635 (0.252–1.600) 0.336

Male 56 (49.6) 75 (64.1)

Female 57 (50.4) 42 (35.9)

pT stage 4.081 (1.461–11.390) 0.007 3.124 (1.293–7.548) 0.011

pT3 87 (77.0) 100 (85.5)

pT4 26 (23.0) 17 (14.5)

Tumor site 0.666 (0.340–1.304) 0.236 1.461 (0.836–2.553) 0.183

Left 38 (33.6) 31 (26.5)

Right 42 (37.2) 42 (35.9)

Rectal 33 (29.2) 44 (37.6)

Differentiation 2.072 (1.000–4.293) 0.050 1.008 (0.712–1.426) 0.965

Moderate 91 (80.5) 34 (29.1)

Poor 19 (16.8) 14 (12.0)

Well 3 (2.7) 68 (58.1)

N/A 0 1(0.9)

EMLVI 0.347 (0.118–1.015) 0.053 1.112 (0.729–1.697) 0.622

Yes 18 (15.9) 3 (2.6)

No 95 (84.1) 34 (29.1)

N/A 0 80 (68.4)

Tumor Type <0.001 (0–Inf ) 0.998 1.632 (0.801–3.327) 0.178

Adenocarcinoma 104 (92.0) 100 (85.5)

Mucinous 5 (4.4) 13 (11.1)

Mixed 4 (3.5) 3 (2.6)

N/A 0 1 (0.9)

DSD—-full follow-up NA NA

Yes 15 (13.3) 24 (20.5)

No 98 (86.7) 93 (79.5)

DSD—5-year follow-up NA NA

Yes 9 (8.0) 17 (14.5)

No 104 (92.0) 100 (85.5)

Image analysis

SIOI 6.119 (2.661–14.07) <0.001 1.960 (1.310–2.932) 0.001

+/+/+ 62 (54.9) 19 (16.2)

+/+/− 30 (25.6) 47 (40.2)

+/−/− or −/−/− 21 (18.6) 51 (43.6)

CD3+ in IMCT 9.803 (3.105–30.950) <0.001 4.218 (1.779–10.000) 0.001

Low 29 (25.7) 47 (40.2)

High 84 (74.3) 70 (59.8)

CD3+CD8+

0–50-μm TB
9.420 (2.996–29.620) <0.001 2.617 (1.144–5.990) 0.023

Low 27 (23.9) 47 (40.2)

High 86 (76.1) 70 (59.8)

CD68+/CD163+ in CT 4.287 (1.550–11.860) 0.005 1.317 (0.557–3.110) 0.531

Low 90 (79.6) 42 (35.9)

High 23 (20.4) 75 (64.1)

Significant features (P < 0.05) are shown in bold.
Freq. frequency, DSD disease-specific death.
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patients in this cohort were diagnosed with pT3 stage and 17
were of pT4 stage disease. Four rectal cancer patients received
neo-adjuvant therapy and 12 CRC patients underwent adjuvant
therapy (only one of whom had confirmed EMLVI).

The association between macrophage density, lymphocytic
density, and tumor budding
Multiplex immunofluorescence was performed on two sequential
CRC tissue sections for the visualization of CD3+, CD8+, CD68+,
CD163+, CD68+CD163−, and pancytokeratin (PCK)+ cells (Fig. 1).
Image analysis automatically quantified CD68+, CD163+, and
CD68+CD163− macrophage densities and CD3+ and CD8+ cells
within the invasive margin (IM), tumor core (CT), and both IM and
CT areas (IMCT) as well as TBs within the TB region of interest
(TBROI, Fig. 2). Spearman correlation was used to evaluate their
relationships and the resultant r coefficients are shown in Fig. 3.
There was a weak positive correlation between TBs and CD68+

(r= 0.12) and TBs and CD68+CD163- (r= 0.15) macrophage
subpopulations in the CT. CD68+ density (IM, CT, IMCT) and
CD163+ (IM) were weakly associated with CD3+ density in the IM
(r= 0.20, r= 0.27, r= 0.25, and r= 0.12, respectively). CD68+

density in the CT was weakly correlated with CD3+ density in the
IMCT (r= 0.25) as well as CD8+ density in the IM (r= 0.25).
CD163+ density (IM, CT, IMCT) was weakly associated with CD8+

density in the IM (r= 0.14, r= 0.17, and r= 0.16, respectively), CT
(r= 0.17, r= 0.28, and r= 0.24, respectively), and IMCT (r= 0.18,
r= 0.25, and r= 0.23, respectively). CD68+CD163- density (IM, CT,
IMCT) was correlated with both CD3+ in the IM (r= 0.33, r= 0.28,
and r= 0.32, respectively) and IMCT (r= 0.33, r= 0.26, and r=
0.30, respectively). TBs were inversely correlated with CD3+

density in the IM (r=−0.30), CT (r=−0.25), and IMCT (r=
−0.28). TBs were also inversely correlated with CD8+ density in
the IM (r=−0.26), CT (r=−0.22), and IMCT (r=−0.26). The P-
values of these associations are listed in Supplementary Table 1.

Prognostic model development
The number of features reported in this study was reduced to
eliminate any features that were not significantly associated with
prognosis. To do this, the 69 image analysis features, together
with seven features from the clinicopathological report of the
training cohort, were input into a Cox proportional hazard
regression with the least absolute shrinkage and selection
operator (LASSO) penalty. Results reported 11 significant features
(Table 2). These 11 features were subsequently the input to a
random forest analysis, which ranked them by their mean
decrease Gini. Features with mean decrease Gini of greater than
3 were then selected and were binarized based on the training
cohort’s survival data. In an iterative process, the least significant
feature was then removed until its removal negatively affected the
model’s prognostic value. This led to the development of a new
prognostic system, termed the “Spatial Immuno-Oncology Index”
(SIOI). The SIOI comprised of the following three image analysis
features: the average CD3+ density in the IMCT, the average
number of lymphocytes within 50-μm of TB and the CD68+/
CD163+ ratio in the CT. The optimal cutoff points of these features
are shown in Supplementary Table 2. Patients with a co-
occurrence of high density of CD3+ cells in IMCT, high-average
number of CD3+CD8+ cells within 50-μm of TB and low CD68+/
CD163+ ratio in the CT were grouped in the “+/+/+” category.
Patients presenting only two of these features were classed as
“+/+/−” whereas patients with one or none of these features
were classed as “+/−/− or −/−/−”.

Survival analysis
Univariate Cox regression was applied to the clinicopathological
data of the training cohort to assess their prognostic significance.

Only pT stage was significantly associated with disease-specific
survival over the full follow-up period of 11.8 years (hazard ratio
(HR)= 4.081; 95% CI, 1.461–11.390; P= 0.007, Table 1).
Kaplan–Meier (KM) survival analysis (Fig. 4) was further performed
and patients of pT4 stage had significantly lower disease-specific
survival rate over 11.8 years follow-up (51.7%) in comparison to
the patients with pT3 stage (88.8%; Fig. 4a). The independent
prognostic value of the 11 features selected by Cox regression
with LASSO regularization was also investigated using multivariate
Cox regression and results are shown in Supplementary Table 3.
To assess the prognostic significance of the SIOI, Cox regression
and KM survival analysis were applied. When KM survival analysis
was performed, “+/+/+” patients were shown to confer
significantly better survival outcome (100% survival rate) when
compared to the “+/+/−” patients (76.8% survival rate) or the
“+/−/− or −/−/−” patients (41.5% survival rate, Fig. 4c). By
applying a univariate Cox regression, the prognostic value of SIOI

Fig. 1 Multiplex immunofluorescence of the tumor cells, tumor
infiltrating lymphocytes, and macrophages. Tumor cells are shown
in green, CD3+ and CD68+ cells in yellow, CD8+ and CD163+ in red.
Composite images for both slides are shown.
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was again found to be highly significant (HR= 6.119; 95% CI,
2.661–14.069; P < 0.001, Table 1). Patients who received adjuvant
treatment were then excluded from the cohort and univariate Cox
regression was reapplied to assess SIOI’s prognostic value. Results
showed that the prognostic significance of SIOI did not change
significantly (HR= 6.407; 95% CI, 2.784–14.740; P < 0.001). Cox
regression was also applied to the model’s individual components;
CD3+ cells in IMCT (HR= 9.803; 95% CI, 3.105–30.950; P < 0.001),
average number of CD3+CD8+ cells with 50-μm of TB (HR= 9.420;
95% CI, 2.996–29.620; P < 0.001) and CD68+/CD163+ ratio in CT
(HR= 4.287; 95% CI, 1.550–11.860; P= 0.005, Table 1). When
multivariate forward stepwise Cox regression was applied using
SIOI, its composite parts and pT stage, SIOI was shown to be the
only image-based variable to be prognostically significant (HR=
6.119; 95% CI, 2.661–14.069; P < 0.001), followed by pT stage (HR=
3.531; 95% CI, 1.260–9.893; P= 0.016, Supplementary Table 4). We
then created a 2 category SIOI where “+/+/+” patients (low-risk)
were compared to “+/+/−, +/−/−, −/−/−” (high-risk) patients.
Results showed that the high-risk group included all 15 disease-
specific deaths of the cohort therefore meaning that no deaths
occurred within the patient group that predicated good
prognosis. In comparison, when categorizing the patients based
on pT stage, the pT4 group included only seven out of the 15
events (Supplementary Fig. 1).
The prognostic significance of SIOI was re-examined using 5-

year follow-up data. KM survival analysis (Fig. 5) revealed that
“+/+/+” patients conferred significantly better survival outcome
(100% survival rate) when compared to patients of the “+/+/−”
group (87.9% survival rate) or the “+/−/− or −/−/−” group
(69.6% survival rate, Fig. 5c). Univariate Cox regression results also
showed that SIOI was prognostically significant (HR= 5.508; 95%
CI, 1.910–15.880; P= 0.002). SIOI was also the sole significant
feature to predict disease-specific death on 5-year prognosis (HR
= 5.508; 95% CI, 1.910–15.884; P= 0.002) when entered into a
multivariate forward stepwise Cox regression model together with
its composite parts and pT stage (Supplementary Table 5). When
the 2 category SIOI was examined, results showed that the high-
risk group included all seven disease-specific deaths for the 5-year
follow-up (Supplementary Fig. 1c). In comparison, when categor-
izing the patients based on pT stage, the pT4 group included only
four out of the seven events for the 5-year follow-up period. pT
stage was not found to be significant when applying a univariate
Cox regression using 5-year follow-up (HR= 2.925; 95% CI,
0.784–10.900; P= 0.110) or KM survival analysis (Fig. 5a).

Validation of SIOI
SIOI was then assessed on an independent validation cohort (n=
117), which included 56 patients treated in Scotland and 61
patients treated in Japan. The training cohort cutoff points,
calculated for each of the SIOI’s composite parameter, were
applied to the validation cohort. SIOI was shown to be
prognostically significant when assessed by univariate Cox
regression using full follow-up (HR= 1.960; 95% CI, 1.310–2.932;
P= 0.001, Table 1). Exclusion of patients who received adjuvant
treatment did not alter the prognostic value of SIOI (HR= 1.958;
95% CI, 1.274–3.010; P= 0.002). The SIOI was also found to be
prognostically significant using 5-year follow-up (HR= 2.440; 95%
CI, 1.350–4.390; P= 0.003). The results from the KM survival
analysis also showed that SIOI was significantly associated with
patient survival (8.6-year: P= 0.002, Fig. 4d and 5-year: P= 0.002,
Fig. 5d). For 8.6-year follow-up, only one disease-specific death
was included in the low-risk category (“+/+/+”) whereas for 5-
year follow-up all patients within the group survived. When
testing the SIOI only on the Scottish subcohort of the validation
cohort, one event was included in the low-risk group (“+/+/+”,
Supplementary Fig. 2a) whereas when assessing it only on the
Japanese subcohort, no events were observed in the low-risk
group (Supplementary Fig. 2b) for the full follow-up period. pT
stage was shown to be prognostically significant in the validation
cohort when assessed by univariate Cox regression (8.6-year
follow-up: HR= 3.124; 95% CI, 1.293–7.548; P= 0.011 and 5-year
follow-up: HR= 3.912; 95% CI, 1.445–10.590; P= 0.007) or KM
survival analysis (8.6-year: P= 0.008, Fig. 4b; 5-year: P= 0.004, Fig.
5b). When comparing the 2-tier SIOI to pT stage using 8.6-year
follow-up, 16 out of the 17 disease-specific deaths were captured
within the high-risk group of SIOI (“+/+/−, +/−/−, and −/−/−”,
Supplementary Fig. 1b) whereas only six of these were captured
by the pT4 stage group. Using 5-year follow-up, all 17 disease-
specific deaths were included in the high-risk group whereas
pT4 stage included only six out of the 17 events (Supplementary
Fig. 1d).

DISCUSSION
The TME, which consists of several interacting cellular subpopula-
tions including immune cells, is an influencing factor in tumor
progression28. Studying multiple features of the TME, and their
interactions, may provide a more accurate and personalized
patient prognosis than by reporting single elements in isolation. In

Fig. 2 Automated image analysis workflow. a Regions of interest for quantification of features. The tumor core is shown in green (CT), the
tumor bud (TB) region of interest in blue (TBROI), and the invasive margin in yellow (IM). b Composite image: CD3+ cells in yellow and CD8+

cells in red, image analysis mask: classification of lymphocytes, CD3+ cells in yellow, CD8+ cells in red and their colocalization (CD3+CD8+),
based on image analysis thresholds, in orange, raw PCK+ image: pancytokeratin+ (PCK+) cells (epithelial cells) in green, tumor/stroma
segmentation: tumor regions in turquoise and stroma regions in orange, PCK+ cell quantification: epithelial cell quantification within the
tumor areas. c Composite image: CD68+ cells in yellow and CD163+ cells in red, image analysis mask: classification of macrophages, CD68+

cells in yellow, CD163+ cells in red and their colocalization in orange. d automatic image coregistration. e Spatial analysis for lymphocytes
(CD3+ cells in light blue circles, CD8+ cells in orange circles), macrophages (CD68+CD163− cells in green rhombus and CD163+ cells in blue
rhombus) and TBs (gray circles). Proximity lines are shown for macrophages within 50-µm of TBs or lymphocytes.
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this study, we assess the prognostic significance of macrophage
subpopulation densities and their ratios (CD68+, CD163+, and
CD68+CD163− expressing cells) within different regions of the
tumor (IM, CT, IMCT) using automated image analysis. Further-
more, we assess the spatial relationships between macrophages,
TBs and tumor infiltrating lymphocytes to further our under-
standing of their role in patient survival. Machine learning led to
the development of a highly significant prognostic index. This

index (SIOI) consisted of CD3+ infiltration densities in the IMCT,
the average number of CD3+ and CD8+ cells within 50-μm
proximity to TBs and a CD68+/CD163+ cellular ratio in the CT.
When applying the SIOI to a training cohort of patients, it stratified
a subpopulation of stage II CRC patients who experienced a 100%
survival rate over both 5- and 11.8-year follow-up. This result was
validated in an independent unseen patient cohort, which
consisted of patients from Scotland and Japan. SIOI stratified a
patient population in which 100% of patients survived 5-year
follow-up and in which 95% survived 8.6-year follow-up.
Tumor-associated macrophages are key players within the TME

and their function differs among distinct TMEs15. In CRC, the role
of macrophages is controversial with a number of studies
reporting their presence as a favorable prognostic factor23–25

and others demonstrating their association with adverse prog-
nosis26,27. In this study, we found that a low CD68+/CD163+

cellular ratio in the CT was significantly associated with improved
disease-specific survival. This suggests that rather than the overall
macrophage densities being a significant factor, it is the
proportion of the CD163+ subpopulation of macrophages that
confers prognostic significance. Indeed, in previous work by Feng
et al.29, CD206+/CD68+ ratio was shown to be a better prognostic
biomarker than CD68+ or CD206+ cell density for disease-free
survival and overall survival in stage II colon cancer. Results from
this study also showed that a high CD206+/CD68+ ratio was
correlated with poor disease-specific survival, which is in
disagreement with our results. However, in that study, macro-
phage quantification was performed on stromal regions of tissue
microarray cores, whereas in our study we assess the macrophage
infiltration across whole-slide images to examine their different

Fig. 3 Spearman correlation matrix for macrophages, lymphocytes, and TBs. A correlation coefficient is shown for each relationship. A
greater than 0 coefficient is shown in purple and indicates a positive association, a less than 0 coefficient is shown in orange and indicates a
negative association.

Table 2. LASSO penalized Cox regression and Random Forest Gini
coefficients for the significant features.

Features Coefficients

LASSO Mean decrease Gini

CD3+ in IMCT −0.00057 4.28147

CD3+CD8+ within 0–50-μm of TB −0.10314 3.90178

CD68+/CD163+ in CT 0.12435 3.61488

CD68+CD163- in CT 0.00150 3.48619

CD8+ in CT −0.00007 3.07934

TB Number 0.00008 2.68648

CD163+ within 0–50-μm of CD8+ −0.00034 2.43362

pT 0.89074 0.65122

EMLVI −0.32011 0.60136

Age 0.38133 0.55309

Differentiation 0.61914 0.50729
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spatial distribution within the heterotypic and heterogeneous
TME. In fact, in a study by Yang et al.30, the CD163+/CD68+ ratio
was shown to be significantly associated with relapse free survival
and overall survival in CRC only when assessed at the tumor front,
but not in the CT. This therefore highlights that the clinicopatho-
logical implication of macrophages may vary according to their
distinct location within the tumor, as also demonstrated in this
study. Unlike macrophage density, the prognostic significance of
tumor infiltrating lymphocytes in CRC is well established, with
multiple studies reporting high lymphocytic infiltration to be
associated with better patient survival outcome7,8,14,31. In line with
previous results, we have shown that patients with high CD3+

infiltration densities in the IMCT confer better survival outcome
than patients with low-lymphocytic infiltration.
The epithelial to mesenchymal transition (EMT), in which cells

lose their epithelial properties such as cell–cell adhesion while
gaining mesenchymal characteristics such as the ability to
migrate, plays a critical role in tumor invasion and metastasis32.
Previous studies have shown that macrophages have pro-

tumorigenic properties by stimulating cell migration and
EMT33,34. Additionally, TBs are regarded to have undergone
EMT35 as their molecular characterization has previously revealed
the gain of mesenchymal-like properties36. When this study
assessed the relationship between macrophage densities and TB
number, a weak positive correlation was observed. These results
may suggest that tumor budding and hence tumor invasion might
be driven through a mechanism relating to the macrophage
function within the TME. A study by Trumpi et al.27, has reported
that co-culture of macrophages with patient-derived colono-
spheres aided tumor-budding formation. An alternative possibility,
might be that macrophages are recruited to high budding tumors
for the destruction of these tumor cells, therefore acting in an
antitumorigenic fashion. In fact, in a study by Li et al.37, patients
with both high number of TBs and increased CD68+ macrophage
infiltration conferred a favorable survival outcome, which was
similar to patients with low tumor budding. Consistent with results
by Li et al.37, we also observed a positive, although weak,
association between lymphocytic and macrophage densities

Fig. 4 KM survival analysis for pT stage and SIOI for training cohort (11.8-year follow-up) and validation cohort (8.6-year follow-up). a pT
stage for training cohort. b pT stage for validation cohort. c SIOI for training cohort. d SIOI for validation cohort. The “+/+/+” category
represents the group of patients who have CD3+ density in the IMCT above the cutoff point (389.6 cells/mm2), average CD3+CD8+ number
within 0–50-μm of TB above the cutoff point (4.1) and CD68+ /CD163+ ratio in the CT below the cutoff point (1.096); “+/+/−” group
represents patients who are positive for only two of these features and “+/−/− or −/−/−” represents the group of patients who have only 1
or none of the above features. The HR is calculated using univariate Cox regression.
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within the TME. This could suggest that macrophages act in an
antitumorigenic fashion by inducing a T-cell lymphocytic response
for the elimination of these aggressive tumor subpopulations. A
weak negative association was observed between TBs and
lymphocytic densities, which concur well with previous findings38.
Future studies though would need to be conducted to confirm
these observations as well as investigate and establish the
molecular mechanisms behind tumor budding and their associa-
tion with lymphocytic and macrophage density within the TME.
All image analysis features together with the data from the

clinicopathological report were assessed for prognostic signifi-
cance. In order to identify the most significant prognostic factors,
a workflow consisting of Cox regression with LASSO regularization
and random forest analysis was employed. These methods were
selected in order to overcome any issues relating to highly
correlated features as well those arising from complex, high
dimensional data. Ten-fold cross validation and out-of-bag error
were applied whilst running the Cox regression (LASSO regular-
ization) and the random forest model, respectively, in order to

avoid overfitting of our model, prior to its testing in an
independent cohort. The index derived from our machine learning
model was shown to have high prognostic significance and was
the only significant feature to add value to a Cox regression model
(Forward stepwise method), which included pT stage and the
model’s individual components when using 5-year follow-up. The
prognostic value of the index’s ability to identify a patient
subpopulation with very good prognosis was then validated in an
independent and international stage II CRC cohort without the
need of any amendment of the thresholds of the image analysis or
those used during the statistical analysis. To ensure that adjuvant
treatment did not adversely affect the prognostic index, we
excluded these patients from the training cohort as well as the
validation cohort. Upon exclusion, the prognostic significance of
the index did not change. This multi-parameter prognostic index
demonstrates the importance of evaluating various TME compo-
nents and their interactions, to better understand the complex
factors that affect tumor progression. The translation of such
indexes into a clinical setting, would aid in the identification of

Fig. 5 KM survival analysis for pT stage and SIOI for training cohort (5-year follow-up) and validation cohort (5-year follow-up). a pT
stage for training cohort. b pT stage for validation cohort. c SIOI for training cohort. d SIOI for validation cohort. The “+/+/+” category
represents the group of patients who have CD3+ density in the IMCT above the cutoff point (389.6 cells/mm2), average CD3+CD8+ number
within 0–50-μm of TB above the cutoff point (4.1) and CD68+/CD163+ ratio in the CT below the cutoff point (1.096); “+/+/−” group represents
patients who are positive for only two of these features and “+/−/− or −/−/−” represents the group of patients who have only 1 or none of
the above features. The HR is calculated using univariate Cox regression.
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patients who may not require adjuvant treatment, which would
correspondingly have a positive impact on the patient’s quality
of life.
A key strength of this study was the use of automated image

analysis for the classification and quantification of all cells and
features reported. This therefore negates any potential inter and
intraobserver variability39 and enables the standardization and
reproducibility of the results. However, due to the heterogeneity
across large patient populations, there exists variation in the
intensity of signal to noise in the immunofluorescence intensity.
To ensure artefact is not quantified as false positives, stringent
thresholding was applied. This, however, can result in some
positive-cell intensity lying below the set thresholds40. Despite this
potential limitation, the results shown in this study stood up to
scrutiny as all thresholds were kept constant across all images
from the training and the validation cohort, which included
patients from international institutes. We therefore demonstrate
evidence that such methodologies can be widely applicable to the
classification of cellular subtypes within the TME.
In this study, we first apply multiplex immunofluorescence on

two sequential slides, which allows the quantification of the
density and colocalization of cellular markers within distinct
regions of the TME (IM, CT, IMCT). Second, using HALO® image
analysis software we automatically coregistered the serial sections,
which offered the capability of studying the spatial interactions
between multiple features within the TME. Finally, through a
machine learning approach we demonstrate and validate a
prognostic model, which could provide clinicians support in
identifying patients with good prognosis, who would not need
detailed follow-up or toxic, invasive, and expensive, further
treatment. This would therefore result in an increase in patient
quality of life and a decrease in costs to healthcare providers.
Taken together, the findings of this study highlight the prognostic
importance of capturing multiple distinct and interacting TME
components in an objective and accurate way by the use of
automated image analysis and machine learning.

METHODS
Ethics statement
All experiments were conducted in accordance with the Declaration of
Helsinki. The study was approved by the NHS Lothian NRS BioResourse and
the ethical approval (13/ES/0126) was granted by East of Scotland Research
Ethics Service as well as by the Ethics Committee of the National Defense
Medical College (approval ref. No2992). Further ethical clearance was not
required as the acquired data were anonymized.

Patient cohort
We studied tumor specimens from 230 patients diagnosed with stage II
CRC. One hundred and sixty-nine patients underwent surgical resection
over the period 2002–2004 in Edinburgh, UK hospitals. Sixty-one patients
underwent surgical resection over the years 2006–2011 at the National
Defense Medical College Hospital, Japan. Sequentially selected specimens
of patients from Edinburgh, between the years 2002–2003, were used as a
training cohort (n= 113). All available patient specimens from Edinburgh
treated within the year 2004 and the specimens from the Japanese cohort,
were used as a validation cohort (n= 117). For each patient sample, all
patient blocks were evaluated by the analysis of the corresponding
hematoxylin and eosin stained tissue sections. A single tumor block
containing the deepest tumor invasion was then selected for this study.
Clinicopathological data, such as gender, age and TNM staging, were taken
from the original pathology report. All clinicopathological data reported for
both cohorts were compliant withTNM5 guidelines. Patient follow-up was
up to 11.8 years for the Edinburgh patients in the training cohort, 10.2
years for the Edinburgh patients in the validation cohort and 8.6 years for
the Japanese cohort. To ensure homogeneity between the Edinburgh and
Japanese patients within the validation cohort, patients were censored at
8.6 years.

Immunofluorescence and image capture
Antibody and immunofluorescence optimization was performed as
previously described14. Briefly, brightfield uniplex immunohistochemistry
was performed on 3-μm thick normal tonsil tissue sections to assess CD3
(rabbit polyclonal anti-human CD3, A045201-2, Dako), CD8 (mouse
monoclonal anti-human CD8, M7103, Dako), CD68 (rabbit monoclonal
anti-human CD68, 76437, Cell Signalling Technology), and CD163 (mouse
monoclonal anti-human CD163, MRQ-26, Cell Marque) antibodies. A CRC
tissue microarray was used for the assessment of PCK (mouse monoclonal
anti-human cytokeratin, M3515012, Dako) primary antibody. Once anti-
body specificity was confirmed, uniplex immunofluorescence was used to
optimize the primary and secondary antibodies as well as the associated
fluorophores to be used for the visualization of each antibody. Multiplex
immunofluorescence was then performed on two sequential 3-μm thick
CRC tissue sections from the patient samples in each cohort. The first tissue
section was labelled for CD3, CD8, PCK primary antibodies at 1:400, 1:200,
and 1:100 dilutions, respectively, whereas the second tissue section was
labelled for CD68, CD163, and PCK at 1:3000, 1:3000, and 1:100 dilutions,
respectively. Hoechst (H3570, Thermo Fisher Scientific) was used for
counterstaining both sections at a 1:20 dilution in deionized water.
Tyramide signal amplification (TSA) FITC fluorescence kit (NEL741B001KT,
PerkinElmer) was used for the visualization of CD3 and CD68 antibodies.
TSA Cyanine 5 (Cy5) fluorescence kit (NEL745B001KT, PerkinElmer) was
used for the CD8 and CD163 antibodies’ visualization. Anti-mouse
Alexafluor 555 secondary antibody (A21422, Thermo Fisher Scientific)
was used for PCK detection. Slides were mounted with ProLong Gold
Antifade Reagent (P36930, Thermo Fisher Scientific). Immunofluorescence
labelled slides were digitized using a Zeiss Axioscan.Z1 whole-slide scanner
(Zeiss) through a 20× objective. Exposure times were as follows: FITC 25ms
for CD3 and 2ms for CD68, Cy5 8ms for CD8 and 10ms for CD163, Cy3
120ms for PCK of first slide and 15ms for the sequential slide, Hoechst
12ms for first slide and 1ms for the sequential slide. These settings were
kept constant across all patient cohorts.

Image analysis
HALO® image analysis software (version 2.3.2089.34, IndicaLabs, Inc.) was
used for whole-slide image analysis.
Quantification of the tumor infiltrating lymphocytes and TBs was

performed as previously described14. Briefly, CD3+ and CD8+ lymphocytes
were quantified using the High-Plex FL module within the IM (an area of
500-µm in and out of the invasive front), CT (the remainder tumor area),
and both of these areas combined (IMCT) (Fig. 2a). Cell classification was
based on dye intensity thresholds (CD3: FITC and CD8: Cy5) within
segmented nuclei (dye-nucleus-positive threshold: FITC= 0.15, Cy5=
0.132), the cytoplasm (cytoplasm-positive threshold: FITC= 0.5, Cy5=
0.075), and the membrane (membrane-positive threshold: FITC= 0.5,
Cy5= 0.075). These thresholds were set identically for all patient samples.
TBs were quantified in the TBROI (1000-μm border inward from the
invasive front; Fig. 2a). Using the Area Quantification FL v1.2 module, the
overall slide PCK intensity was measured and patients were dichotomized
into low and high PCK categories (threshold= 2.16 × 10−2). Two image-
based random forest classifiers; one for low PCK intensity images and one
for the high PCK intensity images were used for the accurate tumor to
stroma segmentation. Within the classified tumor regions, nuclei were
segmented using a High-Plex FL module and tumor clusters of up to four
cells in size were classified as TBs (Fig. 2b). Total TB number as well as TB
and lymphocytic cell densities were exported from HALO® image analysis
software.
CD68+, CD163+, and CD68+CD163- macrophages were quantified

within the IM, CT, and IMCT (Fig. 2a). The High-Plex FL module was used
for the classification of CD68+ (FITC), CD163+ (Cy5), and CD68+CD163-

cells, based on dye-nucleus-positive threshold (FITC= 0.200, Cy5= 0.132),
cytoplasm-positive threshold (FITC= 0.500, Cy5= 0.075), and membrane-
positive threshold (FITC= 0.500, Cy5= 0.075; Fig. 2c). Cell densities within
the two regions of interest were exported from HALO® software.
Two images from the serial sections (1st with CD3, CD8, PCK, Hoechst

and 2nd with CD68, CD163, PCK, Hoechst) were automatically coregistered
within HALO® software (Fig. 2d).
After coregistration, the spatial coordinates of the lymphocytes, TBs and

macrophages were imported into a two-dimensional spatial plot. Within
this plot the spatial relationships between macrophages and TBs, as well as
macrophages and lymphocytes, were assessed. To do so, CD68+, CD163+,
and CD68+CD163- cells that were present within 0–50-μm and 0–100-μm
radii from the TBs, CD3+, or CD8+ cells were quantified.
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Statistical analysis
The automatic quantification of the numbers, densities, and spatial
relationships of CD3+, CD8+, CD68+, CD163+, CD68+CD163- cells, and
TBs resulted in 69 image-based features. These features together with
the data from the clinicopathological report, were imported into RStudio
1.1.41941 running R 3.4.342. The relationship between lymphocytes,
macrophage density and TB number was assessed on the training cohort
using the Spearman correlation coefficients (r). Univariate Cox regression
was applied to the clinicopathological data to assess their prognostic
significance. P-values of less than 0.05 were considered statistically
significant. A Cox regression with LASSO regularization was applied to all
image analysis features as well as the data from the clinicopathological
report. This was performed to reduce the feature dimensionality of the
dataset by identifying the most prognostically significant features.
During this process, a 10-fold cross validation was performed to avoid
overfitting. The independent prognostic significance of the selected
features was assessed using a multivariate Cox regression in SPSS43. The
data from each selected significant feature were then input into a
random forest (n= 500) decision tree model. The features were then
ranked according to their mean decrease Gini coefficient44. Features
with a mean decrease Gini of greater than 3 were then assessed for their
correlation to each other. For any highly correlated features, only the
one with the highest Gini coefficient was selected for further analysis.
Optimal cutoff points for the selected features were calculated based on
disease-specific survival using the survminer package45. Iterative
combinations of the selected features were tested and the model with
highest prognostic significance was chosen. Univariate Cox regression
and KM survival analysis were performed to assess the SIOI and
compared it with its individual components and pT stage. Multivariate
Cox regression with forward selection was also applied to compare the
prognostic values of the SIOI, its components and pT stage. We then
assessed the prognostic significance of our model on an independent
validation cohort by directly applying the cutoff points obtained from
the training cohort. Disease-specific survival, defined as the period of
time (in months) from surgical resection to the date of death from CRC
or the last follow-up date for patients still alive, was used for all our
survival analysis.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
Image analysis was performed using commercially available HALO® image analysis
software. The specific modules used for the classification and quantification of all
image analysis features are described in the “Methods” section. All data analysis was
performed using RStudio version 1.1.41941 running R version 3.4.342 and SPSS version
2443 software. The data analysis code is available from the corresponding author
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