61 research outputs found

    Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla

    Get PDF
    Purpose: Readout‐segmented echo‐planar imaging (rs‐EPI) can provide high quality diffusion data because it is less prone to distortion and blurring artifacts than single‐shot echo‐planar imaging (ss‐EPI), particularly at higher resolution and higher field. Readout segmentation allows shorter echo‐spacing and echo train duration, resulting in reduced image distortion and blurring, respectively, in the phase‐encoding direction. However, these benefits come at the expense of longer scan times because the segments are acquired in multiple repetitions times (TRs). This study shortened rs‐EPI scan times by reducing the TR duration with simultaneous multislice acceleration. Methods: The blipped‐CAIPI method for slice acceleration with reduced g‐factor SNR loss was incorporated into the diffusion‐weighted rs‐EPI sequence. The rs‐ and ss‐EPI sequences were compared at a range of resolutions at both 3 and 7 Tesla in terms of image fidelity and diffusion postprocessing results. Results: Slice‐accelerated clinically useful trace‐weighted images and tractography results are presented. Tractography analysis showed that the reduced artifacts in rs‐EPI allowed better discrimination of tracts than ss‐EPI. Conclusion: Slice acceleration reduces rs‐EPI scan times providing a practical alternative to diffusion‐weighted ss‐EPI with reduced distortion and high resolution. Magn Reson Med 74:136–149, 2015

    One-year changes in brain microstructure differentiate preclinical Huntington's disease stages.

    Get PDF
    OBJECTIVE: To determine whether brain imaging markers of tissue microstructure can detect the effect of disease progression across the preclinical stages of Huntington's disease. METHODS: Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and gender-matched healthy controls (N = 19) over a 1y period. RESULTS: Significant differences were found over the four groups in change of mean diffusivity in the posterior basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR) of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y changes between the preclinical stages was the UHDRS confidence in motor score. CONCLUSIONS: With sensitivity to longitudinal changes in brain microstructure within and between preclinical stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a promising state marker for monitoring treatment response and identifying the optimal therapeutic window of opportunity in preclinical Huntington's disease

    SARS-CoV-2 is associated with changes in brain structure in UK Biobank

    Get PDF
    There is strong evidence of brain-related abnormalities in COVID-191,2,3,4,5,6,7,8,9,10,11,12,13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51–81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans—with 141 days on average separating their diagnosis and the second scan—as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up

    Exploring variability in basal ganglia connectivity with functional MRI in healthy aging.

    Get PDF
    Changes in functional connectivity (FC) measured using resting state fMRI within the basal ganglia network (BGN) have been observed in pathologies with altered neurotransmitter systems and conditions involving motor control and dopaminergic processes. However, less is known about non-disease factors affecting FC in the BGN. The aim of this study was to examine associations of FC within the BGN with dopaminergic processes in healthy older adults. We explored the relationship between FC in the BGN and variables related to demographics, impulsive behavior, self-paced tasks, mood, and motor correlates in 486 participants in the Whitehall-II imaging sub-study using both region-of-interest- and voxel-based approaches. Age was the only correlate of FC in the BGN that was consistently significant with both analyses. The observed adverse effect of aging on FC may relate to alterations of the dopaminergic system, but no unique dopamine-related function seemed to have a link with FC beyond those detectable in and linearly correlated with healthy aging

    Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging

    Get PDF
    A key aim in epidemiological neuroscience is identification of markers to assess brain health and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an emerging magnetic resonance imaging technique that measures tissue magnetic susceptibility and has been shown to detect pathological changes in tissue iron, myelin and calcification. We present an open resource of QSM-based imaging measures of multiple brain structures in 35,273 individuals from the UK Biobank prospective epidemiological study. We identify statistically significant associations of 251 phenotypes with magnetic susceptibility that include body iron, disease, diet and alcohol consumption. Genome-wide associations relate magnetic susceptibility to 76 replicating clusters of genetic variants with biological functions involving iron, calcium, myelin and extracellular matrix. These patterns of associations include relationships that are unique to QSM, in particular being complementary to T2* signal decay time measures. These new imaging phenotypes are being integrated into the core UK Biobank measures provided to researchers worldwide, creating the potential to discover new, non-invasive markers of brain health

    ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI

    Get PDF
    Resting-state fMRI (R-fMRI) has shown considerable promise in providing potential biomarkers for diagnosis, prognosis and drug response across a range of diseases. Incorporating R-fMRI into multi-center studies is becoming increasingly popular, imposing technical challenges on data acquisition and analysis, as fMRI data is particularly sensitive to structured noise resulting from hardware, software, and environmental differences. Here, we investigated whether a novel clean up tool for structured noise was capable of reducing center-related R-fMRI differences between healthy subjects. We analyzed three Tesla R-fMRI data from 72 subjects, half of whom were scanned with eyes closed in a Philips Achieva system in The Netherlands, and half of whom were scanned with eyes open in a Siemens Trio system in the UK. After pre-statistical processing and individual Independent Component Analysis (ICA), FMRIB's ICA-based X-noiseifier (FIX) was used to remove noise components from the data. GICA and dual regression were run and non-parametric statistics were used to compare spatial maps between groups before and after applying FIX. Large significant differences were found in all resting-state networks between study sites before using FIX, most of which were reduced to non-significant after applying FIX. The between-center difference in the medial/primary visual network, presumably reflecting a between-center difference in protocol, remained statistically significant. FIX helps facilitate multi-center R-fMRI research by diminishing structured noise from R-fMRI data. In doing so, it impr

    Reliability of multi-site UK Biobank MRI brain phenotypes for the assessment of neuropsychiatric complications of SARS-CoV-2 infection: The COVID-CNS travelling heads study.

    Get PDF
    Funder: National Institute for Health Research (NIHR)INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study

    Multimodal population brain imaging in the UK Biobank prospective epidemiological study

    Get PDF
    Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank

    Exploration in vivo des atteintes morphologiques et microstructurelles dans la maladie de Huntington grĂące Ă  l'IRM

    No full text
    Résumé françaisRésumé anglaisORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    • 

    corecore