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A B S T R A C T

Objective: To determine whether brain imaging markers of tissue microstructure can detect the effect of disease
progression across the preclinical stages of Huntington's disease.
Methods: Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional
anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into
three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and
gender-matched healthy controls (N = 19) over a 1y period.
Results: Significant differences were found over the four groups in change of mean diffusivity in the posterior
basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences
between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR)
of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent
increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in
the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding
the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y
changes between the preclinical stages was the UHDRS confidence in motor score.
Conclusions: With sensitivity to longitudinal changes in brain microstructure within and between preclinical
stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a
promising state marker for monitoring treatment response and identifying the optimal therapeutic window of
opportunity in preclinical Huntington's disease.

1. Introduction

Huntington's disease (HD) is an autosomal dominant inherited,
hyperkinetic-hypotonic movement disorder, caused by a poly-
glutamine-expansion. HD is considered to be a model neurodegenera-
tive disorder, as it is amenable to predictive genetic testing with esti-
mation of years to the onset of symptoms, thereby enabling the entire
natural history of neurodegeneration to be studied from a presympto-
matic stage at 100% risk of conversion to the disease (Ross et al., 2014).

Atrophy of the neostriatum, and more generally alterations in grey
matter (GM) and white matter (WM) macrostructure, can be detected as
much as 15y before the predicted onset of the disease using non-

invasive neuroimaging techniques (Paulsen et al., 2006; Aylward et al.,
2011). These findings suggest that clinical diagnosis of HD is not the
start, but rather the endpoint of a series of pathophysiological altera-
tions in the cerebral neural tissue. At the time of motor diagnosis, large
parts of neuronal tissue are already irreversibly lost. Hence, there is a
strong need for an early, prognostic state biomarker to monitor pro-
gression of the disease and proximity to the onset of the disease above
and beyond genetic information, and to ensure that the optimal time-
frame for disease modifying, neuroprotective therapy is not missed
(Weir et al., 2011).

Striatal volume loss, as quantified using structural MRI, is a reliable
biomarker of disease stage and progression that show longitudinal
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changes in preclinical HD (preHD) (Aylward et al., 2011; Majid et al.,
2011a; Majid et al., 2013). However, these structural changes are in-
herently monotonic over the course of the neurodegenerative disease –
with a progressive decrease in volume – making it difficult to capture
differential effects across various presymptomatic stages of the disease.

This caveat might be overcome using diffusion MRI, a technique
sensitive to microstructural changes. Diffusion imaging is sensitive to
subtle abnormalities to the brain microstructure, which serves as a
proxy marker of tissue integrity. For instance, mean diffusivity (MD)
tends to be increased in pathological tissue where the density of cellular
membranes is reduced. In the presence of swelling or inflammation
however, diffusivity decreases, something first witnessed in ischemic
injury (Warach et al., 1995), but also in mild traumatic brain injury
(Singh et al., 2016), in idiopathic inflammatory-demyelinating diseases
(Canellas et al., 2007) or at a presymptomatic stage of familial Alz-
heimer's disease (Ryan et al., 2013). Fractional anisotropy (FA) is par-
ticularly sensitive to changes in tissue preferentially organised along
one particular orientation, such as along axonal fibres, where it is
usually found to be decreased in case of a pathological process as a
result of the reduction in cellular boundaries that hinder diffusion.
However in subcortical grey matter and regions of white matter
crossing, where different orientational preferences can be observed, a
selective degeneration of some of these connections can make this
tissue appear less isotropic, leading to a (seemingly) counter-intuitive
increase of FA (Ciccarelli et al., 2001; Douaud et al., 2009;
Douaud et al., 2011).

As such, diffusion imaging has the potential to detect early brain tissue
alterations in the presymptomatic stage preceding the volume loss detected
at a macro-scale with structural MRI (Douaud et al., 2009; Rosas et al.,
2010; Douaud et al., 2011). However, evidence for longitudinal micro-
structural changes in preHD is lacking so far. Previous longitudinal research
did not reveal any microstructural MD or FA changes in preHD over a
period of 18 months (Domínguez et al., 2013; Poudel et al., 2015), or 2
years (Odish et al., 2015b) compared with changes in healthy controls.

Here, we used diffusion MRI to investigate whether diffusion me-
trics could detect longitudinal changes over a one-year period in preHD,
and discriminate across the different presymptomatic stages of the
disease.

2. Methods

We investigated longitudinal changes in diffusion metrics in both
grey matter (GM) and white matter (WM), comparing participants with
presymptomatic HD (preHD) (N = 35) with age- and gender-matched
healthy controls (CON)(N = 19). We used three complementary ap-
proaches. First, individual region-of-interest (ROI) analysis, inherently
limited in its scope but unaffected by registration issues, to investigate
longitudinal changes in MD and FA in the basal ganglia, the corpus
callosum, the posterior limb of the internal capsule, and the cerebral
peduncles. Second, probabilistic tractography was used to individually
identify cortico-subcortical tracts (which cannot be isolated using
anatomical ROIs) and to investigate longitudinal changes in diffusion

tensor metrics in these tracts. Finally, tract-based spatial statistics
(TBSS) was carried out as an unbiased, whole WM analysis approach to
investigate changes in the entire WM skeleton of the participants.

2.1. Participants and study design

Participants were recruited from the Huntington's disease Centre of
Excellence at the University of California, San Diego (Majid et al.,
2011a; Majid et al., 2011b). They provided written informed consent in
accordance with an institutional review board protocol of the Uni-
versity of California, San Diego. 38 preHD participants and 22 healthy
CON were initially scanned on two visits, with a 1y interval between
visits. Of these participants, three were excluded from the present data
analysis due to missing or corrupted data, and three further subjects
were excluded because the imaging protocol was not consistent with
the one used for the other participants (different b-value, see 2. Data
acquisition).

We therefore included 35 preHD participants and 19 age-, gender-
and education-matched CON in the final diffusion data analyses
(Table 1). The genetic expansion length of the mutant CAG repeat in HD
is predictive for age at the onset of symptoms (Langbehn et al., 2010;
Rosenblatt et al., 2012). To account for this variability, we further
subdivided preHD participants into 3 different subgroups according to
the number of years to the predicted onset of their disease: far from the
onset of symptoms (FAR, n = 11), midway to the onset (MID, n = 11),
and near the onset (NEAR, n = 13). The estimated age at onset was
calculated using a prediction formula based on the length of each
participant's CAG repeat, and the parental age at the onset of the dis-
ease (Aylward et al., 1996). Two of the participants in the NEAR sub-
group progressed from presymptomatic to manifest stage of the disease
between baseline and follow-up visits. We chose this formula, in par-
ticular over another one also commonly used (Langbehn et al., 2010),
as this was the only one to accurately predict that these two participants
who presented with manifest HD within one year should be in the group
NEAR the onset of symptoms (Supplementary Figure 1).

All participants’ motor function was assessed using the Unified
Huntington's Disease Rating Scale (UHDRS) motor, modified motor and
confidence in motor scores. Cognitive ability was measured using the
Mini–Mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MOCA), as well as the Wechsler Abbreviated Scale of
Intelligence (WASI, matrix and vocabulary). All participants were also
tested using the digit span test to assess their working memory, the
symbol digit modality test, and the Stroop test, a cognitive interference
task. Behavioural measures included the Symptom Checklist (SCL) 90, a
self-report questionnaire assessing psychiatric symptoms (Derogatis and
Unger, 2010), and the Barratt Impulsiveness Scale, a questionnaire
designed to assess the personality construct (trait) of impulsiveness
(Patton et al., 1995). All measurements were taken at both timepoints,
except for UHDRS motor-related scores, which were assessed at base-
line in CON.

Table 1
Demographic data for healthy controls and all preHD subjects, as well as for subgroups according to the onset of symptoms (FAR, MID, NEAR).

Controls PreHD FAR MID NEAR

N 19 35 11 11 13
Sex 12F/7M 20F/15M 4F/7M 7F/4M 9F/4M
Age at baseline (y) 38.8 ± 12.1 41.8 ± 9.9 35.6 ± 6.1 38.8 ± 9.7 49.6 ± 7.8
Mutant CAG length

range
– 41.9 ± 2.6

36–48
41.5 ± 3.2
36–47

43.1 ± 2.4
40–48

41.3 ± 1.8
39–45

Nonmutant CAG length
range

– 18.3 ± 3.5
12 – 29

18.6 ± 2.3
16 – 24

18.6 ± 4.2
12 – 28

17.8 ± 3.9
12 – 29

Years of education 15.8 ± 2.5 15.6 ± 2.5 15.6 ± 2.6 15.5 ± 1.9 15.7 ± 2.9
UHDRS motor score at baseline 0.05 ± 0.2 1.7 ± 1.7 1.5 ± 1.6 1.5 ± 1.8 2.2 ± 1.9
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2.2. Data acquisition

Data were acquired with a General Electric (Milwaukee, WI, USA)
1.5T EXCITE HDx scanner with an 8-channel phased-array head coil.
Image acquisition included a high-resolution 3D T1-weighted inversion
recovery spoiled gradient recalled (IRSPGR) sequence (echo time
TE = 2.8 ms, repetition time TR = 6.5 ms, inversion time TI = 600 ms,
flip angle = 12°, band width = 244 Hz/pixel, field of view = 24 cm,
matrix size = 256 × 192, slice thickness = 1.2 mm).

Diffusion-weighted data were acquired using single-shot echoplanar
imaging with isotropic 2.5 mm voxels, b-value = 1000s/mm² and 51
diffusion directions (TE = 80.4 msec, TR = 13,200 msec, field of
view = 24 cm, matrix size = 96 × 96, 47 axial slices).

2.3. Data processing

We used the FMRIB software library (FSL, version 5.0.4)
(Smith et al., 2004; Jenkinson et al., 2012) to pre-process the MRI data.
First, diffusion-weighted and T1-weighted structural images were brain
extracted (Smith, 2002). This was done in the halfway space (see more
details on the registration procedure below in 3.4.) to avoid any bias in
the brain extraction between any of the two timepoints. Brain-extracted
T1 and FA maps were linearly registered to one another within-subject
(12 degrees of freedom). A diffusion tensor model was fitted at each
voxel of the brain-extracted data (Behrens et al., 2003), and MD and FA
maps were created for each subject. Additional preprocessing steps
were performed on the diffusion‐weighted images: head motion and
within‐scan motion between scans were accounted for using a series of
rigid body registrations, and image distortion caused by eddy currents
was corrected in FSL. A probabilistic diffusion model with modelling of
crossing fibres was fit within each voxel (Behrens et al., 2007), and
probabilistic tractography was run in native space with default settings.
We optimised pre-processing and image registration for the long-
itudinal study design to avoid any bias between timepoints
(Thomas et al., 2009; Douaud et al., 2011).

2.3.1. Grey matter region of interest analysis
The basal ganglia were chosen as a priori ROI for the GM analysis in

this study, as these subcortical structures, and particularly the caudate
nucleus and putamen, are the neuroanatomical substrates of neuro-
pathological changes characteristic of HD (Furtado et al., 1996;
Rosas et al., 2001; Vonsattel et al., 2011; Guo et al., 2012). An auto-
matic segmentation tool, FIRST, was used on the T1-weighted images in
their native space to delineate the caudate nucleus, putamen, globus
pallidus, and nucleus accumbens, which we call “basal ganglia” in the
following for convenience. The basal ganglia mask was subdivided into
an anterior and posterior subdivision to reflect the structural con-
nectivity profile of the basal ganglia – the more anterior part of the
basal ganglia being predominantly connected to prefrontal areas and
associated with cognitive and limbic processing, whereas the more
posterior part is predominantly connected with sensorimotor regions of
the brain (Lehericy et al., 2004; Draganski et al., 2008; Douaud et al.,
2009). The subdivision was made along a coronal plane (in MNI space,
y = 63). The binarized ROI masks were eroded in native space using a
kernel with a sphere of radius 2 mm to ensure that the spatial extent of
the seed masks was confined to the subcortical GM and to reduce partial
volume effects. The arithmetic mean of the MD and FA values was then
calculated across all voxels in these eroded ROI masks.

2.3.2. White matter analysis: atlas-based ROIs
We used the corpus callosum (genu, body, splenium), the bilateral

posterior limb of the internal capsule and cerebral peduncles as a priori
ROIs from the JHU ICBM-DTI-81 WM atlas (Mori et al., 2008;
Oishi et al., 2008), and the acoustic radiations from the Jülich histo-
logical probabilistic atlas as a negative control region (Burgel et al.,
2006; Eickhoff et al., 2007). The posterior limb of the internal capsule

and cerebral peduncles were chosen as ROIs as WM regions mainly
containing fibres of the corticospinal tract, and showing longitudinal
changes in diffusion metrics in early clinical HD (Della Nave et al.,
2010; Gregory et al., 2015). The corpus callosum on the other hand was
shown to play a crucial role in the pathophysiology of preHD
(Bartzokis et al., 2007; Rosas et al., 2010; Di Paola et al., 2012). All ROI
masks were eroded using a kernel with a sphere of radius 2 mm to avoid
detecting signals from the GM or cerebrospinal fluid. The arithmetic
mean of the MD and FA values was calculated across all voxels in the
eroded ROIs.

2.3.3. White matter analysis: cortico-subcortical ROIs using tractography
Briefly, we ran probabilistic tractography in native space using the

same basal ganglia masks as defined for the GM ROI analysis as “seed”
masks, i.e. where to start the tractography algorithm. In addition, we
used simple, geometric target masks, as well as exclusion masks of the
cerebrospinal fluid, brain stem and cerebellum, to focus the analysis on
cortico-subcortical pathways (see below for more details). The
weighted mean of the MD and FA values across all voxels belonging to
each tract was calculated.

A probabilistic diffusion model was fit on the raw data, and crossing
fibres were modelled within each voxel of the brain using the FSL tool,
Bayesian Estimation of Diffusion Parameters Obtained using Sampling
Techniques (BEDPOSTX, FSL default settings). We chose to estimate
crossing fibres as it has been shown that upwards of 63% of the voxels is
robustly estimated to contain more than one fibre population (Jeurissen
et al., 2013). The output of BEDPOSTX was used to run probabilistic
tractography in native space for each subject and for each time-point
separately with seed, target, and exclusion masks using the FSL tool
probtrackx2 (default settings). The basal ganglia masks used for the GM
ROI analysis were used as seeds for probabilistic tractography. To focus
the analysis on cortico-subcortical pathways, we used exclusion mask of
the brainstem and cerebellum by drawing a rectangle in the axial plane
at z= 33 covering the brainstem and cerebellum. Exclusion mask of the
cerebrospinal fluid was created in native space by thresholding and
binarizing the S0 image using an 85% threshold. Target masks, and
exclusion masks of the brainstem and cerebellum were created in MNI
standard space, and then registered onto each subjects’ FA image.

We did not attempt to reconstruct the cortico-spinal tract as it was
covered both at the individual level by our ROIs in the posterior limb of
the internal capsule and the cerebral peduncles, but also in these same
regions by TBSS at the voxel-level. There are also well-known issues
arising from using the entire, virtually-reconstructed tract to extract MD
and FA values, such as averaging out opposite effects in regions of
dominating vs. dominated fibres of interest (Groeschel et al., 2014).

We used the density of diffusion streamlines as weights to calculate
the weighted mean of MD and FA across all voxels belonging to each
tract, excluding those voxels in crossing fibre regions. In other words, a
greater importance towards the contribution to the mean was assigned
to voxels where many streamlines passed through, whereas a lesser
weight was assigned to voxels were only few streamlines passed
through. We defined voxels belonging to crossing fibre regions by
thresholding (at 0.4) and binarizing the average FA image over the two
time-points and all the subjects, this to principally exclude the voxels in
the centrum semi-oval where three fibres cross (Douaud et al., 2011;
Sotiropoulos et al., 2013), and to avoid averaging out opposite effects
(Groeschel et al., 2014).

The resulting image was registered into each subject's native space
using nonlinear transformation warps, and binarized to yield masks of
crossing fibre regions.

2.3.4. White matter analysis: whole white matter TBSS
The TBSS analysis was used to investigate whole-brain white matter

microstructural abnormalities unconfounded by the choice of ROI.
TBSS increases the sensitivity and the interpretability of the results by
reducing registration error and partial volume effects compared with
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traditional voxel-wise approaches. This is important in a context of
neurodegenerative disorders when there might be some substantial
structural changes and hence cross-subject misalignments (Smith et al.,
2006). We developed an optimised registration approach to register
baseline and follow-up FA images in a study-specific template space,
whereby the baseline and follow-up FA images were first registered into
their halfway space for each subject. The average FA image between
baseline and follow-up in halfway-space was then non-linearly regis-
tered onto the FMRIB FA template (FMRIB58). Both warps were con-
catenated and applied to create a study-specific template using an equal
number of preHD participants and control subjects across both time-
points. Finally, baseline and follow-up FA images for each subject were
non-linearly registered to this study-specific template. The same spatial
transformations were applied to the MD images. We then subtracted the
baseline from the follow-up images to obtain a difference image of MD
and FA for each subject. These difference maps were projected onto the
TBSS skeleton to remove the effect of cross-subject spatial variability
that remains after the nonlinear registration. Voxel-wise statistics were
run using the smoothed (Gaussian kernel with sigma of 1.5 mm) ske-
letonised MD and FA difference images.

2.4. Statistical analyses

Statistical analyses of ROI-extracted imaging data, as well as clinical
and behavioural measures were all carried out using Statistical
Software Package for the Social Sciences (SPSS 20), except for the
voxel-wise TBSS analyses which were carried out using ‘randomise’ in
FSL. R (version 3.2.3) was used to create the longitudinal plots, and the
PCA analysis was done in Python (using scikit-learn). Scripts are
available at github.fmrib.ox.ac.uk/douaud/preHD.

2.4.1. ROIs and tractography
ANOVA was performed on the 1y changes in diffusion tensor me-

trics (difference between the two timepoints) using SPSS for the preHD
subgroups (according to estimated years to onset of symptoms) and
healthy CON. Post-hoc tests, based on Tukey's honest significant dif-
ference (HSD) method, were used to test for significant pairwise group
differences between FAR, MID, NEAR and CON. One-sample t-test was
performed using SPSS to investigate the MD and FA difference between
follow-up and baseline within each of the 4 groups (FAR, MID, NEAR
and CON). Shapiro–Wilk test was used to test if the data, and the re-
siduals from the ANOVA, were normally distributed. If the data were
not normally distributed, non-parametric equivalent tests were used:
Mann–Whitney U-test, Kruskal–Wallis ANOVA, and Dunn-Bonferroni
test. All inferential statistical analyses were corrected for multiple
comparisons using Bonferroni correction across ROIs, i.e. across the 2
basal ganglia GM ROIs, or the 6 WM ROIs.

2.4.2. TBSS
For voxel-wise statistics, permutation-based non-parametric in-

ference (5000 permutations) was used to test for changes in MD and FA
between all preHD participants and healthy CON, and between CON
and the 3 subgroups (Nichols and Holmes, 2002). Results were con-
sidered to be significant for P < 0.05, and corrected for multiple
comparisons using threshold-free cluster enhancement with 2D opti-
misation (Smith and Nichols, 2009).

2.4.3. Clinical and cognitive scores
We carried out one-sample t-test to assess the significant changes in

all questionnaire scores in the entire preHD group (motor, cognitive and
behavioural, see full break down in Fig. 4). We cross-correlated these

Fig. 1. Significant difference in longitudinal changes in MD across the four groups in the posterior basal ganglia. Control group “CON”, preHD far from onset
of symptoms “FAR”, midway to onset “MID”, and near the onset “NEAR”. Stars indicate significant longitudinal differences between groups and within groups, after
adjusting for multiple comparisons across ROIs (Bonferroni correction). Each subject is represented by a dashed line, the group means by solid lines, with standard
errors in shading.
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(cross-sectional and longitudinal) scores for the entire preHD group to
assess whether the 1y changes in those scores were consistent with the
structure observed at each timepoint separately. In addition, a principal
component analysis (PCA) was performed on these changes in all
questionnaire scores to determine what the dominant 1y changes in
these measures were. The changes in questionnaire scores were scaled
before applying PCA using the ‘StandardScaler’ from scikit-learn (Py-
thon), so that these values had a zero mean and unit variance.

To make it possible to compare with our imaging results, we also
performed ANOVA and post-hoc tests in a similar way as described
above, i.e. across the 4 groups for all changes in cognitive and beha-
vioural questionnaire scores (and 3 preHD sub-groups for the UHDRS
motor-related scores). Finally, we investigated whether any of the sig-
nificant diffusion changes observed across the four groups in the pre-
vious imaging analyses could be related to changes in motor, cognitive
or behavioural changes.

Data were tested for normality, and if found non-normally dis-
tributed, equivalent statistical tests (described above) were used. All
results were corrected for multiple comparisons across the number of
questionnaires (n = 31).

3. Results

3.1. Grey matter region of interest analysis

Group comparisons using ANOVA revealed a statistically significant
overall effect across the 4 groups (CON, FAR, MID, NEAR) on change in
MD in the posterior basal ganglia (F(3,50) = 4.5, P = 0.007, Fig. 1).
Post-hoc pairwise group comparisons revealed a significant group dif-
ference in MD change in the posterior basal ganglia between FAR and

NEAR (Cohen's
d = −3.63, P = 0.004). This effect was driven by a relative de-

crease in MD in FAR, compared with a relative increase in MD in NEAR.
There was also a trend in the pairwise comparisons between FAR and
MID (P = 0.094 before correction). Within the NEAR group, MD was
significantly increased from baseline to follow-up in the posterior basal
ganglia ROI. There was no statistically significant overall effect across
the 4 groups on the FA change in the 2 ROIs of the basal ganglia.

3.2. White matter analysis

3.2.1. Atlas-based ROIs
We found a statistically significant overall effect of group (CON,

FAR, MID, NEAR) on the MD change in the splenium of the corpus
callosum (F(3,50) = 6.7, P = 0.002, Fig. 2). Post-hoc pairwise group
comparisons showed that this effect was driven by a significant group
difference between FAR and MID (Cohen's d = −4.47, P = 0.00025),
whereby MD showed a relative decrease in the FAR group compared
with a relative, significant increase in the MID group. There was also a
trend in the pairwise comparisons between CON and FAR, and FAR and
NEAR (P= 0.048 and P= 0.057 before correction, respectively). There
was no significant overall effect of group on the change in FA.

As expected, there was no significant effect of group in either dif-
fusion metrics in the acoustic radiations.

3.2.2. Cortico-subcortical tractography ROIs
We found no significant overall effect across groups or within

groups on the change in MD or FA across the tracts connecting cortex
and the basal ganglia as identified using probabilistic tractography
(lowest P = 0.13, see Supplementary Table 1).

Fig. 2. Significant difference in longitudinal changes in MD across the four groups in the splenium of the corpus callosum. Stars indicate significant
longitudinal differences between groups and within groups, after adjusting for multiple comparisons across ROIs (Bonferroni correction). There was no outlier in any
of the four groups.
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3.2.3. Whole white matter voxel-wise analysis
There was no significant overall effect of group on MD change in the

WM skeleton (lowest
P = 0.231).
Despite a lack of overall significant effect across the 4 groups, and in

the interest of completeness, we still report here the results of pairwise
group comparisons. These showed a significant group difference be-
tween FAR and MID mainly in the splenium of the corpus callosum, but
also in the right parietal cingulum bundle, superior longitudinal fasci-
culus, posterior limb of the internal capsule and superior corona radiata
(Fig. 3). This was again explained by a relative decrease of MD in FAR,
and a relative increase in MID. Similarly, while there was no overall
effect of group on FA, there was a significant group difference in change
between FAR and MID in the right splenium of the corpus callosum,
driven by a relative decrease in FA in MID, compared with a relative
increase in FAR (Fig. 3).

There was an additional significant group difference in FA change
between CON and MID in the right splenium extending into the pos-
terior part of the body of the corpus callosum, superior longitudinal
fasciculus and superior corona radiata, mainly explained by a decrease
of FA in MID. Voxel-wise within group effect was found in MID,
whereby MD was significantly increased and FA decreased mainly in
the splenium of the corpus callosum, as well as the right superior
longitudinal fasciculus (Supplementary Figure 2).

3.3. Relationship with motor, cognitive and behavioural measures

3.3.1. Changes in questionnaire scores in the entire preHD group
We found a significant change in the entire preHD group in ob-

sessive-compulsive (OC) symptoms on the Symptom Checklist-90
(SCL90, P = 3 × 10−7), but this decrease was mainly due to what

appears to be strong test-retest effects. These test-retest effects were
also exhibited in the CON group. As a result, there was no difference in
changes in OC between the two CON and preHD groups. There was also
a significant change in UHDRS modified motor score in the entire
preHD group (P = 0.0012), and a trend in UHDRS confidence in motor
score (P = 0.002 before correction).

In contrast with what could be observed at each separate timepoint,
most of the changes in the preHD participants were only moderately
correlated with one another (Fig. 4). This illustrates the highly variable
rate of change in these scores across preHD participants. There were a
few exceptions: the changes in UHDRS motor, modified motor and
confidence in motor scores were highly correlated with one another (up
to r = 0.8, i.e. 64% shared variance), and the changes in SCL90 in-
terpersonal sensitivity were also moderately correlated with a range of
other changes in SCL90 scores and in the motor scores on the Barratt
Impulsiveness Scale (BIS).

A PCA in the preHD group further demonstrated that the main two
orthogonal axes consisted of a linear combination of changes in the
SCL90 scores, and a linear combination of changes in the UHDRS
motor-related scores, respectively (the first 10 axes, explaining more
than 80% of the variance of the data – see also Supplementary Figure
3 – as well as the first 2 axes thresholded, are shown in Fig. 5).

3.3.2. Group differences in changes in questionnaire scores
There was no significant difference across the 4 groups in changes in

either cognitive or behavioural scores.
We found a significant effect across the 3 preHD subgroups (FAR,

MID, NEAR) on the changes in UHDRS confidence in motor score
(P = 0.0004), as well as a trend in UHDRS motor and modified motor
score (P = 0.004 and P = 0.003 before correction)(Fig. 6). Post-hoc
tests showed that this effect was driven by significant differences

Fig. 3. Significant voxel-wise difference between FAR and MID in change in MD (left) and in FA (right). Top, significant voxel-wise TBSS differences (dilated
for visual purposes, red-yellow: 0.001 < P-corrected < 0.05) in MD and FA change between the preHD subgroups FAR and MID, overlaid on the TBSS skeleton (blue)
and the FA study-specific template. Significant differences are found mainly in the splenium of the corpus callosum. Results are corrected for multiple comparisons
across voxels using threshold-free cluster enhancement at P=0.05. Bottom, plots showing for illustrative purposes the longitudinal change of the average MD values,
as well as the FA values (opposite pattern to MD), over all significant voxels of the TBSS map for the contrast FAR vs. MID. The red frame indicates the significant
effect found in TBSS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between FAR/MID and NEAR, as there was a strong, significant in-
crease in the UHDRS motor, modified motor, and confidence in motor
scores within the NEAR subgroup.

3.3.3. Post-hoc correlation analyses
Finally, we wanted to investigate whether the significant diffusion

changes observed across the four groups in the previous analyses
(posterior basal ganglia, splenium of the corpus callosum) could be
related to changes in motor, cognitive or behavioural changes. Despite
the small sample sizes, we found that each group showed meaningful
trends (P < 0.05) in correlations between changes in questionnaire
scores and MD, even though this imaging measure showed both in-
crease and decrease over time depending on the preclinical subgroup
(Supplementary Figure 4). The strongest, significant effects were ob-
served between changes in MD in the splenium of the corpus callosum
and changes in phobia and hostility symptoms on the SCL90 for the
MID group (Spearman's rho = +/−0.85, P = 0.0016 for both).

4. Discussion

Here we have investigated longitudinal changes over a one-year
period in diffusion metrics in the GM and WM comparing healthy
control subjects and preHD participants. We show that stratifying
preHD participants into subgroups according to their estimated years to
onset of symptoms yielded results revealing distinct patterns in the
diffusion images at different presymptomatic stages. We found sig-
nificant overall effects on MD change in the posterior basal ganglia and
the splenium of the corpus callosum, as well as significant longitudinal
differences in both diffusion metrics change between FAR and MID,
FAR and NEAR, and CON and MID mainly in the splenium of the corpus
callosum.

To the best of our knowledge, this is the first study that has

demonstrated significant longitudinal changes in diffusion tensor me-
trics within and between the preclinical stages of HD. Previous long-
itudinal diffusion tensor MRI studies in preHD either did not detect any
significant effects, or found significant effects only cross-sectionally
(Domínguez et al., 2013; Odish et al., 2015b; Poudel et al., 2015), or
solely when comparing patients with clinical HD to the preHD group
(Domínguez et al., 2013; Poudel et al., 2015). One notable exception
was that of Domínguez and colleagues’ (Domínguez et al., 2013), which
found a significant within group effect, with an increase of MD in the
caudate of preHD participants close to onset of symptoms (after simi-
larly splitting them into two groups: close and far). Another study
(Odish et al., 2015a), using network-derived measures of ‘nodal be-
tweenness centrality’ on diffusion data, identified differences between
their two preHD subgroups. In addition, previous diffusion MRI studies
in clinical HD have also failed to detect any longitudinal effects
(Vandenberghe et al., 2009; Sritharan et al., 2010). This most likely
stems from the need to stratify participants with (preclinical) HD into
meaningful subgroups, as finely as sample size allows, to ensure that
increases and decreases in diffusion metrics are not averaged out across
the various presymptomatic and clinical stages. This can be observed in
Figs. 1–3, where no change in microstructure would have been found if
all 3 preHD subgroups had been collapsed into one bigger group.

A previous study found a longitudinal reduction in MD in the pu-
tamen when comparing presymptomatic with manifest HD
(Domínguez et al., 2013). This is in line with our results showing a
decrease of MD at earlier stages of the disease, when compared with
later stages (although our findings were obtained within the preclinical
stages of the disease). Interestingly, in that study, as in ours, the pattern
of change in diffusion metrics was also markedly different between
posterior basal ganglia/putamen and anterior basal ganglia/caudate.
There was a decrease then increase of MD (and the opposite pattern in
FA) when transitioning towards later stages of the disease in the

Fig. 4. Cross-correlation matrices between all questionnaire scores in the preHD group. Top, all unthresholded correlations; bottom, thresholded at P = 0.05
corrected for multiple comparisons. Left, changes in these scores over a 1y period are weakly correlated in the preHD group. By contrast, these scores are highly
correlated at both timepoints separately, baseline (middle) and follow-up (right). CAG1 = non-mutant length, CAG2 = mutant length.
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Fig. 5. Principal component analysis of the longitudinal changes in all questionnaire scores in the preHD group. Top, first ten axes (unthresholded), which
together explain more than 80% of the variance. Bottom, the first two axes, accounting for more than a third of the variance (35%), thresholded at 0.25 for visual
purposes. While the first axis consisted of a linear combination of changes in the SCL90 behavioural scores, the second axis was mainly a linear combination of
changes in the UHDRS motor-related scores.

Fig. 6. Significant difference in longitudinal change in the UHDRS confidence in motor scores across preHD groups (left), and at trend level in the UHDRS
motor and modified motor scores (middle, right).Stars indicate significant longitudinal differences between groups and within groups, after adjusting for multiple
comparisons across groups (Bonferroni correction). Difference in longitudinal change in UHDRS motor and modified motor scores across groups did not survive the
correction (P = 0.004 and P = 0.003).
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posterior basal ganglia/putamen, while there was a constant, pro-
gressive increase in MD in the anterior basal ganglia/caudate. This
might indicate that the tissue of the anterior and posterior basal ganglia
is undergoing a pathophysiological process that differs in timing.

Both the ROI and whole WM analyses revealed that changes in MD
were mainly found in the corpus callosum. This is similar to previous
research that found cross-sectional alterations in diffusion metrics in
the corpus callosum across years-to-onset groups with presymptomatic
HD (Rosas et al., 2010). These microstructural alterations preceded
macrostructural atrophy, and were thought to reflect altered inter-
hemispheric communication (Rosas et al., 2010). Notably, we did not
find any significant longitudinal effect in the diffusion metrics over the
cortico-subcortical tracts, confirming that the corpus callosum is a WM
region particularly sensitive to very early damage in HD. This same
region of the cerebral WM also shows pronounced longitudinal changes
in the manifest stage of the disease (Poudel et al., 2015). In our study,
the changes in diffusion metrics were mainly found in the splenium,
rather than in the genu or body of the corpus callosum. This is in line
with topologically selective cross-sectional alterations in diffusion me-
trics markedly found in the posterior corpus callosum in both pre-
symptomatic and clinical HD(Rosas et al., 2010; Di Paola et al., 2012).

Besides being sensitive to longitudinal changes, an ideal state bio-
marker for preHD would shed light on the underlying pathophysiolo-
gical mechanism of such changes. Overall significant differences in MD
change in the posterior basal ganglia and splenium were mainly driven
by decreases in MD in FAR compared with a relative increase in MID/
NEAR. Such a decrease in MD is prima facie counter-intuitive in a
neurodegenerative disorder, because increased MD is traditionally seen
as a characteristic feature of neurodegeneration. However, in a diffu-
sion study of preclinical Alzheimer's disease, MD was found sig-
nificantly decreased at an early stage, and further simulation confirmed
that an increase in microglia cell activation was sufficient to cause such
a decrease at this early preclinical stage (Wang et al., 2015). The
combination of axon damage, cell infiltration and oedema might cause
the reversing of this effect on MD at a later stage. Similar findings have
been shown in familial Alzheimer's disease, where MD was significantly
decreased in the hippocampus and cingulum bundle at a presympto-
matic stage, but increased at a symptomatic stage (Ryan et al., 2013).
Microglial activation, a highly sensitive marker of neuronal insult
(Kreutzberg, 1996), is known to occur in preHD (Tai et al., 2007) and
pseudo-normalizes in later stages (Dowie et al., 2014). Taken together,
this suggests that the initial decrease of MD consistently found at the
earliest stage in our preHD cohort perhaps corresponds to neuro-in-
flammatory processes, and might thus represent very early micro-
structural sign of neurodegeneration. Ultimately however, only animal
models or post-mortem cross-validation will be able to establish the
underlying pathological process undergone by the brain tissue. Notably,
despite MD showing both increase and decrease over time depending on
the stage of the disease investigated, our imaging results in the grey and
white matter correlated with changes in distinct clinical measures in
every single presymptomatic group (albeit at a P < 0.05 trend level
given the small sample size for each group, except for SCL90 phobia and
hostility). The signs of these correlations also confirmed the deleterious
nature of both the initial decrease of MD at the earliest stage of the
disease, and its increase seen at later stages.

Unlike changes seen in structural MRI measures of subcortical and
whole-brain volume in preHD (Majid et al., 2011a; Majid et al., 2011b)
and further demonstrated over the course of 12, 24 and 36 months in
the TRACK-HD study (Tabrizi et al., 2011; Tabrizi et al., 2012;
Tabrizi et al., 2013), the behaviour of the changes in diffusion metrics is
non-monotonic, showing different, meaningful pattern of increase and
decrease for different preclinical stages of HD. We have shown here that
these non-monotonic changes seen in diffusion MRI can be extremely
helpful in understanding the underlying disease mechanisms, as well as
monitoring progression towards the later stages of the disease and the
effects of novel treatment options. These also helped finding significant

differences between the preclinical stages of HD (FAR vs MID/NEAR).
By contrast, only the UHDRS motor-related measures were able to
distinguish preclinical stages thanks to a sharp increase in scores in
NEAR (FAR/MID vs NEAR). In addition to clinical testing, structural
and diffusion MRI should thus be considered together to combine
sensitivity to volumetric changes and to the underlying pathological
mechanisms.

One limitation of this longitudinal study in preHD is its small sample
size but, as stated previously(Friston, 2012), as long as the necessary
statistical precautions have been taken (here strict correction for mul-
tiple comparisons and non-parametric testing for non-normally dis-
tributed data), getting significant results with a small sample actually
indicates that the effect is comparatively large (Cohen's d for differences
between preclinical stages ranged from −3.6 to −4.5). We also en-
sured that our results showed the same effects when adding age, disease
burden ((nCAG-35.5) × age) or sex in the statistical model as “nui-
sance” covariates. Despite an inherent loss of statistical power, all of
our other results remained significant: our GM posterior basal ganglia
after adding to the model either age (F = 4.3, p = 0.004), disease
burden (F = 3.4, p = 0.015), or sex (F = 3.3, p = 0.018); and our
original WM results in the corpus callosum after adding age (F = 5.2,
p < 0.001), disease burden (F = 5.3, p < 0.001), or sex (F = 5.8,
p < 0.001). Another potential limitation is in the diffusion imaging
acquisition, which was carried out at 1.5T. We note however that dif-
fusion tensor metrics in particular, as used here, are quite stable across
different field strengths (Polders et al., 2011), and that the images
benefitted from being acquired with isotropic voxels of 2.5 mm. Great
care was also taken in the preprocessing of the data, as well as to ac-
count for partial voluming by using a combination of approaches (TBSS,
and individual weighted probabilistic tractography and eroded ROIs).
Finally, we re-run all analyses excluding the one preHD participant that
had less than 39 CAG repeats (n = 36), as well as the two preHD
participant who pheno-converted to symptomatic HD at the second
timepoint. Albeit an inherent loss of power, all of the analyses yielded
the same results.

In conclusion, diffusion MRI is able to detect significant and inter-
pretable changes over a one-year period in preHD. Such short period of
follow-up is crucial to establish whether a state biomarker has the po-
tential to detect the effect of treatment. However, as Fig. 4 demon-
strates, such changes are clinically less correlated and more difficult to
track. To reveal these effects, it is necessary to divide subjects into
clinically-meaningful subgroups according to their predicted age at
onset of symptoms. The longitudinal decrease then increase in MD from
earlier to later stages of the presymptomatic disease are perhaps the
hallmarks of an initial early neuroinflammatory process, followed by
neurodegeneration. Diffusion MRI thus offers key complementary in-
formation to the monotonic changes seen in structural MRI, and to
clinical testing. In particular, we have shown here that diffusion metrics
not only provide key mechanistic hypotheses about the underlying
pathophysiological processes which could be tested using animal
models or histological studies, but also much needed distinction be-
tween presymptomatic stages.
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