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Abstract

Introduction

Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool

for understanding the neuropsychiatric complications of COVID-19. For maximum impact,

multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection

on the brain by diverse potentially pathogenic mechanisms, and with high reliability across

multiple sites and scanner manufacturers. Here we describe the development of such a
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protocol, based upon the UK Biobank, and its validation with a travelling heads study. A

multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, dif-

fusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging

(swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK

Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a

comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site

feasibility and between-site variability of this protocol, N = 8 healthy participants were each

scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford)

and 1 using a GE scanner (King’s College London). Over 2,000 Imaging Derived Pheno-

types (IDPs), measuring both data quality and regional image properties of interest, were

automatically estimated by customised UKB image processing pipelines (S2 File). Compo-

nents of variance and intra-class correlations (ICCs) were estimated for each IDP by linear

mixed effects models and benchmarked by comparison to repeated measurements of the

same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-

excellent between-site reliability. Considering only data from the Siemens sites, between-

site reliability generally matched the high levels of test-retest reliability of the same IDPs esti-

mated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE

site resulted in good-to-excellent reliability for many IDPs, although there were significant

between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP,

especially T1 contrast and some dMRI-derived measures. We also identified high reliability

of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-net-

work ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1,

T2-FLAIR and dMRI data.

Conclusion

These results give confidence that large, multi-site MRI datasets can be collected reliably at

different sites across the diverse range of MRI modalities and IDPs that could be mechanis-

tically informative in COVID brain research. We discuss limitations of the study and strate-

gies for further harmonisation of data collected from sites using scanners supplied by

different manufacturers. These acquisition and analysis protocols are now in use for MRI

assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.

Introduction

It is increasingly clear that systemic infection with severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) is often associated with acute neurological complications at the time of

infection, as well as post-acute neurological, cognitive and mental health sequelae that can per-

sist for at least 6 months after infection [1]. It seems likely that SARS-CoV-2 infection can

have adverse effects on healthy brain function and structure that account for its broad spec-

trum of neuropsychiatric complications. The causal or pathogenic mechanisms are not yet

defined but are likely to be several, including at least (i) viral infection of the central nervous

system (CNS), (ii) host immune response to infection, and (iii) cerebrovascular disruption.

For precisely targeted interventions, it will be important to know which pathogenic mecha-

nisms are most relevant for which individual patients, or for which syndromically typical

groups of patients [2, 3].
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secure online platform (https://cnscovid.wbic.cam.

ac.uk/) which will also host patient data from the

COVID-CNS study. The main UK Biobank brain

MRI analysis pipeline, which has been extended

specifically for this study, is available at https://

www.fmrib.ox.ac.uk/ukbiobank/fbp/. Additional

custom code for COVID-related IDPs is available

from https://www.fmrib.ox.ac.uk/ukbiobank/covid/.

Further resources relating to the COVID-CNS study

are available at covidcns.org.
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Magnetic resonance imaging (MRI) could be a key diagnostic tool in understanding the

impacts of systemic SARS-CoV2 infection on the brain and advancing to better treatments for

neuropsychiatric complications of COVID-19 in future. Large-scale post-COVID MRI data-

bases will be important because of the geographic, demographic and clinical heterogeneity of

neurological, mental health and cognitive syndromes that have been reported as acute or post-

acute outcomes of SARS-CoV-2 infection. To acquire such databases requires multi-modal

acquisition protocols and analysis pipelines that can be reliably implemented across a variety

of scanner manufacturers and models. Ideally, multi-modal MRI protocols for post-COVID

research should also be well matched to existing large-scale neuroimaging databases with rele-

vant demographic profiles, such as the UK Biobank database of adults with mean age of 50

years [4]. Here we describe the technical development and validation by a “travelling heads”

study of a multi-site protocol for the COVID-CNS consortium, which aims to collect data on

~700 post-COVID neurological cases and controls from a national network of UK sites. In

addition to its immediate value for COVID research, this work more generally aims to extend

and validate the UK Biobank protocol for a wider range of MRI modalities, and for implemen-

tation across multi-site networks using MRI systems provided by more than one major manu-

facturer, which is expected to be useful for future large-scale MRI studies of non-COVID-

related neuropsychiatric disorders.

We started from the principle that a standard brain MRI protocol, robust enough to be reli-

ably implemented across multiple sites and scanners, should also be inclusive of different

modalities of MRI that can provide complementary insights into candidate pathogenic mecha-

nisms. For example, the C-MORE consortium for multi-organ MRI studies of post-hospital-

ised COVID cases [3] has used a set of 7 brain MRI sequences (Table 1), to measure

T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), susceptibility-weighted MRI (swMRI),

and arterial spin labelling (ASL). The inclusion of each of these sequences was justified by their

diagnostic relevance to distinct pathogenic mechanisms: e.g., swMRI is a marker of iron depo-

sition and micro-haemorrhages, and ASL measures parameters of regional cerebral blood

flow, so both are relevant to vascular mechanisms; T2-FLAIR is a widely used measure of

inflammation-related changes in white matter; T1- and dMRI-derived brain structural pheno-

types have been found to be associated with immune cell counts in blood samples from post-

COVID patients [5]. T1-weighted data have also been used to measure volume and tissue con-

trast of the olfactory bulb and brain stem structures that may be neurotropically infected via

olfactory nerve terminals and other specialist sensory receptors [6, 7]. Thus, the inclusion of

sequences in the C-MORE neuro-MRI protocol was well motivated, but the C-MORE require-

ment to complete all neuroimaging sequences in less than 20 mins, as part of a 70 min multi-

organ MRI protocol, meant that some potentially informative sequences were excluded

(rfMRI) and others were greatly abbreviated (dMRI, ASL).

In this context, we designed a multi-modal MRI protocol specifically for neuroimaging of

post-COVID cases. To optimise comparability with data collected by UKB and C-MORE pro-

tocols, we selected Siemens 3T sequences that were as close as possible to these standards,

including a multiband sequence for resting state fMRI (implemented in UKB but not in

C-MORE) and increasing the scanning time for dMRI and ASL sequences to improve data

quality (and biophysical information content) compared to C-MORE. We also defined a set

of General Electric (GE) 3T sequences that approximated the parameters of the Siemens

sequences (Table 1). Based on our clinical experience to date [2], we rationed the total scan-

ning time of all sequences combined to 30 mins, expecting this to require less than 40 mins of

in-scanner time for patients to complete.

To assess the multi-site feasibility and between-site reliability of these protocols, we con-

ducted a “travelling heads” experiment [8] whereby N = 8 healthy volunteers were scanned
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once at each of 4 UK sites: 3 using Siemens Prisma 3T systems (Cambridge, Liverpool and

Oxford) and 1 using a GE MR750 Discovery 3T system (King’s College London). Multi-site

consistency of neuroimaging data was evaluated on several dimensions, including quality con-

trol (QC) criteria, tissue contrast metrics, and multiple classes of imaging-derived phenotypes

(IDPs) estimated using customised UKB image-processing pipelines. Linear mixed effects

models were used to estimate components of variance and intra-class correlation coefficients

as measures of between-site reliability for each metric and IDP. We focus specifically on two

questions of interest: (i) How does between-site and between-manufacturer reliability of

multi-modal IDPs estimated from these data compare to the benchmark of test-retest reliabil-

ity of IDPs estimated from repeated scans of UKB participants using a Siemens Skyra system?

(ii) Which are the most (and least) reliable of the thousands of IDPs that can be measured in

these data?

Table 1. Multimodal MRI protocols for COVID-related neuroimaging with Siemens and GE 3T scanners.

Modality Manufacturer Acquisition

Time (min:

sec)

Resolution

(mm)

Matrix Key Parameters UKB Protocol

Match

C-MORE

Protocol

Match

T1 (MPRAGE) Siemens 4:54 1.0x1.0x1.0 256x256x208 TI/TR = 800/2000 ms, R = 2 Exact Exact

GE 4:42 1.0x1.0x1.0 256x256x208 TI/TR = 800/2000 ms, R = 2

T2 FLAIR

(SPACE)

Siemens 4:32 1.0x1.0x1.05 256x256x192 TI/TR = 1800/5000 ms, R = 3 Similar Exact

GE 5:58 1.0x1.0x1.0 256x256x196 TI/TR = 1472/5000 ms, R = 2

dMRI Siemens 7:08 2.0x2.0x2.0 104x104x72 TR = 3600 ms, 50 dirs/shell, b = 0, 1000

2000 s/mm2, MB 3 blip-reversed b = 0.

AP phase encoding, 36s of PA encoding

b = 0 for EPI distortion correction

Exact Superset

GE 6:29 2.0x2.0x2.0 104x104x72 TR = 3600 ms, 50 dirs/shell, b = 0, 1000

2000 s/mm2, MB 3 blip-reversed b = 0.

AP phase encoding, 36s of PA encoding

b = 0 for EPI distortion correction

swMRI Siemens 2:08 0.9x0.9x3.0 256x232x48 TE1/TE2/TR = 9.4/20/27 ms, R = 2 Lower resolution Exact

GE 2:04 0.9x0.9x3.0 256x256x48 TE1/TE2/TE3//TR = 4.9/14.1/23.3/29.5

ms, R = 2

ASL segmented

3D-GRASE multi

inversion-time

PCASL (Siemens

only)

Siemens 3:06 3.4x3.4x4.5 64x64x32 TR = variable with PLD, tag = 1800ms,

PLDs = 400:400:2000ms, 2 segments, 1

M0 calibration image

Exact. ASL

protocol has been

added to UKB for

post-COVID-19

scanning

Similar

ASL (single

inversion-time

segmented)

Siemens 5:52 1.88�1.88�4.0

interp. from

3.75�3.75�4.0

128x128x36

interpolated

from 64x64x36

3D-GRASE PCASL TR = 4330ms,

tag = 1800ms, PLD = 2025ms, 4 reps, 1

M0 calibration image

Not included Not

included

GE 5:52 1.88�1.88�4.0

interp. from

3.75�3.75�4.0

128x128x36

interp. from

64x64x36

FSE stack-of-spirals TR = 4840ms,

tag = 1800ms, PLD = 2025ms, 4 reps, 1

M0 calibration image

Resting fMRI Siemens 7:00 2.4x2.4x2.4 88x88x64 TE/TR = 39/735 ms, α = 52˚, MB = 8 Exact Not

Included

GE 7:21 2.4x2.4x2.4 88x88x64 TE/TR = 39/735 ms, α = 52˚, MB = 8

Total scanning

time

Siemens 32:33

GE 33:38

MPRAGE = Magnetization Prepared RApid Gradient Echo; FLAIR = Fluid-Attenuated Inversion Recovery; SPACE = Sampling Perfection with Application optimized

Contrasts using different flip angle Evolution; ASL = Arterial Spin Labeling; PCASL = pseudo-continuous ASL; TR = repetition time; TE = echo time; TI = inversion

time; R = in-plane acceleration factor; MB = multi-band acceleration factor; α = flip angle.

https://doi.org/10.1371/journal.pone.0273704.t001
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Materials and methods

Study design and sample

The “travelling heads” design followed previous studies for evaluation of multi-site MRI proto-

cols [3]. Each of N = 8 healthy participants (7F, age range 21–37 y) was scanned 4 times, once

at each of the 4 pilot sites: the Wolfson Brain Imaging Centre at the University of Cambridge;

the Wellcome Trust-National Institute of Health Research Clinical Research Facility at King’s

College Hospital, King’s College London (KCL); the Liverpool Magnetic Resonance Imaging

Centre (LiMRIC) at the University of Liverpool; and the Wellcome Centre for Integrative Neu-

roimaging at the University of Oxford. Participant age, sex, height and weight statistics are pre-

sented in S1 Table.

Due to lockdown restrictions prevailing in the UK at the time of scanning (Dec 2020 –Feb

2021), all participants were recruited at one site (KCL) and the ordering and timing of safe

travel to other sites was decided pragmatically. Participants were paid an honorarium to com-

pensate for the time taken to complete the protocol. All participants gave informed consent in

writing and the study was approved by the Human Biology Research Ethics Committee, Uni-

versity of Cambridge (HBREC.2020.44). 8 participants were recruited and all completed ses-

sions at each of the sites.

Scanners and scanning sequences

The Cambridge, Liverpool and Oxford sites all used 3T Siemens MAGNETOM Prisma MRI

systems (Siemens Healthineers, Erlangen, Germany) fitted with a 32 channel, receive-only

head coil. KCL used a 3T General Electric MR 750 Discovery MRI scanner (GE Healthcare,

Waukesha, Wisconsin, USA) fitted with a 32-channel, receive-only head coil (Nova Medical,

Wilmington, Massachusetts, USA).

The 3 Siemens scanners implemented the set of 8 sequences summarised in Table 1. The

sequence for T1-weighting was implemented identically across UKB, C-MORE and COV-

ID-CNS protocols. dMRI and fMRI were implemented in COVID-CNS exactly as in the UKB

protocol (the C-MORE protocol included a shorter dMRI sequence and did not include

rfMRI). T2 FLAIR and swMRI sequences were slightly modified from UKB standards in order

to more closely match corresponding sequences in the C-MORE protocol. A multi-post label

delay (PLD) 3D-GRASE ASL sequence [9] was used that was identical to the ASL sequence

used by the UKB COVID study [6] but different to the 2D multi-slice sequence used in

C-MORE; a single delay ASL sequence was additionally used to match the ASL pulse sequence

of the GE scanner.

The GE scanner implemented an analogous set of 8 sequences (Table 1). In most cases it

was possible to approximate the parameters of the Siemens sequences using standard GE

sequences. A modified sequence was implemented for SWI. The GE scanner could not imple-

ment a multi-post label delay ASL sequence with sufficient similarity to the Siemens imple-

mentation, so an additional sequence with a single post label delay was deployed.

Image processing pipelines and IDPs

Each MRI modality was analysed using custom pipelines for image pre-processing and estima-

tion of multiple MRI contrast metrics and imaging-derived phenotypes (IDPs), derived from

the UKB analysis pipelines (www.fmrib.ox.ac.uk/ukbiobank/) [10] and software tools from the

FMRIB Software Library [11] and FreeSurfer [12], with DICOM conversion carried out using

DCM2NIIX [13]. Pipeline customisations were implemented to accommodate minor differ-

ences in imaging parameters between UKB and COVID-CNS protocols, to analyse MRI
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modalities not included in the UKB MRI protocol, e.g., ASL, and to analyse MRI data acquired

using the GE scanner at KCL. Where protocols matched exactly, analysis pipelines were identi-

cal to those used in the C-MORE COVID study [5, 14]. Summaries of pre-processing and IDP

estimation are provided below for individual modalities, with further details available else-

where [5, 6]. For presentation, IDPs reflecting the same phenotypic properties were grouped

together into IDP classes [6, 15].

T1-weighted and T2-FLAIR. Processing of T1-weighted and T2-FLAIR data included

removal of the face, brain extraction, and registration to the MNI152 brain template (Jenkin-

son 2002, Andersson 2008). We measured spatial signal-to-noise ratio (SNR) and grey/white

contrast-to-noise ratio (CNR) as quality control (QC) metrics. As the T1-weighted image was

the primary modality for inter-subject registrations, we also measured QC metrics of registra-

tion quality. For Siemens scanners we applied post-scan 3D gradient distortion correction as

used by the UK Biobank and Human Connectome Project [10]. Implementing the off-scanner

3D gradient distortion correction for Siemens data was not possible for data acquired on the

GE scanner. For the sake of consistency of data pre-processing pipelines across scanner manu-

facturers, a standard GE gradient distortion correction method was implemented for all data.

Field map correction was performed using field maps derived from B0 images with FAST was

used to segment images into grey matter, white matter, and cerebro-spinal fluid (Zhang 2001).

SIENAX [16] was used to estimate volume measures from these segmentations. Grey matter

volumes were estimated for each of 139 regions of interest (ROIs) defined by the Harvard-

Oxford cortical and subcortical atlases [17] and the Diedrichsen cerebellar atlas [18]. Subcorti-

cal volumes were estimated utilizing population priors on shape and intensity variation across

subjects [19]. Using an additional non-linear registration procedure, regional volumes of the

olfactory bulbs were estimated using T1-weighted, T2-FLAIR and dMRI data, and a parcella-

tion template derived from over 700 UKB individuals [5, 20, 21].

T2-FLAIR pre-processing was very similar to the T1w pipeline (with the T1-weighted

image used for registration to the MNI standard template). Images were segmented using

BIANCA to identify white matter (WM) hyperintensities (WMH) [22], using the UKB

BIANCA training file. Periventricular WMH (pWMH) and deep WMH (dWMH) volumes

were defined for complementary subsets of total WM hyperintensities that were, respectively,

less than (or more than) 10 mm distant from the lateral ventricles [5].

T1-weighted and T2-FLAIR images were combined in FreeSurfer to model the cortical sur-

face [12, 17]. This analysis produced IDPs encompassing metrics of subcortical segmentation,

regional surface area, volume and mean cortical thickness from a number of different parcella-

tions, and grey-white intensity contrasts (expressed as the fractional contrast between white

and grey matter intensities as sampled either side of the grey-white cortical boundary) [23]. In

total 1448 IDPs were estimated from T1w and T2_FLAIR scans (S1 Fig).

swMRI. For the Siemens sequence, the magnitude images from the two echoes of the

swMRI data were processed to provide a mapping of T2� signal decay times [10]. For the GE

sequence, swMRI data were acquired using a 3-echo protocol and thus required slightly

adjusted post-processing. Key changes to QSM processing were that the coil-combination of

phase data was performed on the scanner, and the field perturbation map was estimated using

a (magnitude-weighted) linear least-square fit of phase data from all 3 echoes. T2� mapping

was performed using a least square fit of 3-echo magnitude data.

Median T2� was calculated for 14 subcortical structures defined by registration with the

parcellated T1 data [10]. To enable qualitative neurological assessment of individual patients,

the median phase and magnitude data were processed to provide maps highlighting features

indicative of abnormal iron deposition, e.g., due to microbleeds. Quantitative susceptibility

mapping (QSM) was also performed using the phase data, following a recently developed UKB
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QSM pipeline [24]. Susceptibility maps were generated using the iLSQR algorithm [25], with

susceptibility values reported relative to the susceptibility of CSF. In total 28 IDPs were mea-

sured from swMRI scans.

ASL. For the Siemens sequence, we used the BASIL tools in FSL to estimate maps of cere-

bral blood flow (CBF) from single-PLD data and CBF and arterial transit time (ATT) from

multi-PLD data [26]. BASIL analysis included motion correction and distortion correction

using a fieldmap derived from the blip up/down dMRI data. Label and control images were

subtracted and a kinetic model was fitted with modelling of the macrovascular component

[27]. The M0 calibration image acquired without ASL preparation or background suppression

was used to quantify CBF in the CSF for calibration. Tissue-specific CBF was achieved by pro-

jecting grey and white partial volume maps from the T1w image segmented by FAST into the

ASL native space. Grey and white matter masks were defined using partial volume thresholds

of 50% and 80%, respectively. To avoid dependence on site-specific T1w data, T1w grey matter

masks derived from each scan site were normalised into MNI space to identify voxels present

in all masks for the estimation of mean grey matter CBF and ATT. In total 4 IDPs were mea-

sured from both the multi- and single-PLD ASL data.

fMRI. For the Siemens sequence, the multiband-8 fMRI data were corrected for gradient

and EPI distortions, motion-corrected using linear alignment using the UKB Resting fMRI

pipeline [10], and aligned to the T1w image via a single-band reference image. For the GE

sequence, the first high-contrast fMRI image prior to magnetisation stabilisation was used for

T1w registration. FIX ICA-based denoising was applied using the UKB training dataset [28].

FIX identifies and removes artefacts related to measured head-motion, cardio-vascular cycles,

acquisition variability and other phenomena. Two sets of resting-state networks derived from

group ICA decompositions of UKB reference data (25 and 100 component decompositions

with 21 and 55 neural components respectively) were projected onto the pre-processed resting

state fMRI data in a dual-regression analysis [29]. Whole brain functional connectivity matri-

ces were compiled from full and partial correlations (210 and 1485 elements for 25 and 100

component decompositions respectively). The amplitudes (standard deviations) of spontane-

ous activity at each regional node were also estimated (21 and 55 elements) [10]. As individual

connections showed low test-retest reliability in the UKB dataset, we used a dimension-reduc-

tion approach which applied ICA to all functional connectivity IDPs to produce 6 primary

modes of variation [15]. These six modes were projected onto the individual’s functional con-

nectivity matrix and used as additional IDPs. Finally, four fMRI QC IDPs were defined (align-

ment discrepancy, head motion, initial and FIX cleaned tSNR). Excluding the individual

connectivity nodes, 86 IDPs were assessed from the fMRI data.

dMRI. For the Siemens and GE sequences, dMRI data were closely matched to the UKB

sequence and processed using UKB pipelines with minimal alterations [10]. The AP-encoding

data were pre-processed to remove effects of eddy currents, head motion, and slice dropouts,

followed by gradient distortion correction. DTIFIT used the b = 1000 shell for diffusion tensor

image fitting [30] to estimate parameters including fractional anisotropy (FA), tensor mode

(MO) and mean diffusivity (MD). The multi-shell data were processed with NODDI (Neurite

Orientation Dispersion and Density Imaging) [31], to produce microstructural parameters

including ICVF (intra-cellular volume fraction, an index of white matter neurite density),

ISOVF (isotropic or free water volume fraction), L1, L2 and L3 eigenvalues of the diffusion

tensor, and ODI (orientation dispersion index; a measure of within-voxel tract disorganisa-

tion). These parameters were summarised using two approaches: first, using a white-matter

tract skeleton analysis producing average values for 48 standard-space tract masks [32]; and

second, using probabilistic tractography: BEDPOSTx was used to model multi-fibre tract ori-

entation structure and PROBTRACKx for probabilistic tractography with crossing fibre
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modelling [10]. For 27 major tracts defined in AutoPtx (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

AutoPtx), the posterior mean fractional voxel occupancy defined the weights for weighted-

mean estimates of each DTI/NODDI parameter [10]. In total 677 IDPs were measured from

the dMRI data, including 2 QC IDPs.

Statistical analysis and UK Biobank benchmarking

Site and scanner manufacturer can affect the distribution of phenotypes derived from brain

images, adding variability and reducing experimental power in multi-site studies. Site effects

limited to phenotype value shifts and scale changes are easily modeled if they can be estimated,

and will result in within-site subject-type ranking being preserved across sites. Here we charac-

terise the effects of site on the mean value and scale of IDPs, and compare intra-class correla-

tions (ICCs) of IDPs measured 4 times for each subject scanned at 4 different sites in the

travelling heads study, against ICCs of the same IDPs measured twice for each subject (with a

2y interval) at the same site as part of the longitudinal data previously acquired as part of of the

UKB imaging enhancement programme [33]. Biobank-style deconfounding was not possible

here due to the low subject numbers repeated-measures design. Additionally, translation of

Biobank deconfounding estimates was not possible as our pilot cohort differs considerably

from the demographic profile of the UKB cohort. However, these deconfounding procedures

will be implemented in the analyses of the principal study data from the COVID-CNS

consortium.

Site effects were assessed using repeated-measures ANOVAs, testing the null hypotheses of

zero between-site difference in mean IDPs. Normality was assessed with Shapiro-Wilk, and

sphericity was assessed using Mauchly’s test. A lack of sphericity indicates a violation of

ANOVA assumptions, an independent effect of site on IDP measures, i.e., between-site. differ-

ences in variation of an IDP. A Greenhouse-Geisser correction for sphericity was applied if

sphericity was detected. These tests were made for each of 2243 (total) IDPs (excluding IDPs

representing individual functional network connections). A power analysis indicated that the

available subject numbers would permit the reliable identification of “large” site effects (eta-

squared = 0.2) with power = 0.87, while smaller site effects (eta-squared = 0.1) would be less

reliably detected (power = 0.51). When assessing different patterns of effects across different

classes of IDPs, we used the false discovery rate (FDR = 5%, within each class of IDP), to con-

trol type 1 errors. Site-specific effects on each IDP were estimated twice: once using all the ana-

lysable data (from 4 sites, including 1 GE site), and once using only Siemens data (from 3

sites). This allowed us to investigate site-differences in IDP location or sphericity that were

likely related to between-manufacturer differences in MRI scanners.

Intra-class correlation coefficients (ICCs) were estimated for pairs of IDP vectors (N = 8),

each vector comprising measurements of the same IDP in the same subjects at one of 4 possi-

ble scanning sites [34, 35]. The ICC provides a measure of reliability by quantifying the

within-subject similarity of each outcome metric or IDP across different sites. ICCs were esti-

mated by linear mixed effects modeling of variance components, accounting for between-sub-

ject and between-site variance, using the lme4 package in R (Bates et al., 2015) [36]. We report

ICCs estimated by modelling site as a fixed effect (“consistent” ICC, or ICC(3,1)). We esti-

mated ICCs twice: once using all analysable data from 4 sites, including 1 GE site; and once

using only Siemens data from 3 sites. ICC values between 0.5 and 0.8 are generally considered

to indicate fair to good reliability, and ICCs greater than 0.8 or 0.9 are indicative of good or

very good reliability [37].

To benchmark the between-subject and between-site reliability of each IDP measured using

the COVID-CNS protocol, we compared these ICCs from the travelling heads study to
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comparable ICCs estimated in the UKB cohort. In this design, N = 2,817 largely healthy mid-

dle-aged participants were each scanned twice (with mean between-scan interval = 2.25 y;

SD = 0.12) at the same one of 4 possible sites, all using the same scanner for multi-modal MRI

(Siemens Skyra 3T). As noted, the MRI sequences for COVID-CNS were based on similar or

identical sequences for T1, T2 FLAIR, dMRI, swMRI and fMRI used in the UKB enhancement

cohort (Table 1). Hence, we could directly compare test-retest and between-site consistency of

IDPs measured in the UKB and COVID-CNS cohorts. We estimated ICCs between the test

and retest IDP measurement vectors for N = 8 participants, repeatedly, randomly sampled

from the total UKB dataset (N = 2,817; 1000 random samples). This allowed us to estimate the

distribution of ICCs for repeated MRI measurements on N = 8 participants using data with no

site or scanner contributions to variance. From these resampled distributions, we computed P-

values for a two-sided test of the null hypothesis that the ICCs estimated from the travelling

heads experimental data were sampled from the same distribution as the ICCs estimated from

repeated measurements on comparable sub-samples of the UKB cohort.

Results

Sample

Eight participants (7 F; mean age = 23.5 y; SD = 5.8) were successfully scanned at all four sites,

with between-site intervals ranging from 1–14 days.

T1w and T2-FLAIR images

Quality control of T1w and T2 FLAIR images disclosed no deviations in quality of registration

(Fig 1a) across sites or with UK Biobank. T1w SNR and CNR measures from Siemens sites

were consistent with the UKB population distributions. However, the GE scanner produced

images with higher measures of inverse SNR and CNR (equivalent to lower SNR/CNR) than

other sites for all subjects (P<0.05) (Fig 1b). For Siemens sites, across structural IDPs, there

was negligible evidence for site-dependent variation in IDP mean values or scaling, and nor-

mality violations were rare. ICC distributions matched those observed in UK Biobank. Overall,

across structural and other modalities, ICC values were correlated across UK Biobank and

travelling heads samples. Across all IDPs, r = 0.43 for Siemens scanners only and r = 0.39

when including the GE site. With a large proportion of IDPs having consistently high ICCs

Fig 1. T1 images, inverse SNR and inverse CNR metrics across four sites. A) Representative T1 images of the same

subject scanned at each of 4 sites in the travelling heads study. B) left panel, plots of inverse signal-to-noise ratio (iSNR)

for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); right panel, plots of inverse contrast-to-noise

ratio (iCNR) for the same subjects and sites. The grey violin plots in both panels indicate the equivalent distributions of

T1 iSNR and iCNR, respectively, in the UK Biobank reference dataset, using matched random sampling of N = 8

participants. Box and whiskers represent inter-quartile range and 95% confidence intervals respectively. The iSNR and

iCNR metrics are comparable across Siemens sites (CAM = Cambridge, OXF = Oxford, LIV = Liverpool) and aligned

with the UKB benchmark distribution. Both iSNR and iCNR are higher for the GE site (KCL = Kings College London)

(P< 0.05), indicating lower SNR and CNR.

https://doi.org/10.1371/journal.pone.0273704.g001
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(e.g. >0.7), these correlations are estimated from a relatively low level of variation in ICCs

across IDPs (see S1 Fig). To confirm our statistical results given the limited sample size, we

repeated our analysis using the parametric Friedman’s test. This produced very similar distri-

butions of P-values across IDPs (S2 Fig).

Morphometric IDPs, measuring regional volumes and surface areas, showed limited evi-

dence of site-dependent variations in their mean values for Siemens scanners (repeated mea-

sures ANOVA; FDR = 5%, Fig 2a), and no evidence of significant between-site differences in

Fig 2. Statistical results for five classes of structural MRI-derived phenotypes. In the top two panels, each column

represents results for a different class of IDP, from left to right: regional and tissue volumes, cortical area, cortical

thickness, regional and tissue intensity, and cortical grey-white contrast. A) Distribution of log-transformed P-values

from repeated measures ANOVA testing for a site effect on the mean value of individual IDPs in each class; the solid

horizontal line represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted to the ANOVA model

including data from all four sites; orange dots represent P-values for each IDP fitted to the ANOVA including only

data from the three Siemens sites (Cambridge, Oxford, Liverpool). There are more significant between-site differences

in mean IDPs, across all 5 classes, when the GE data from KCL are included in the analysis B) Swarm plots showing

distribution of intra-class correlation coefficients (ICCs) for the same IDPs, estimated for each pair of all 4 sites (green

points), for each pair of the three Siemens sites (orange points), and for comparable test-retest data drawn from the

UKB cohort (blue points). Between-site reliability was generally high for all IDP classes compared to the UKB

benchmark, whether or not GE data were included in the analysis. C) Each column represents finer-grained results for

representative IDPs from each class of IDP: from left to right, left olfactory bulb volume, left precuneus area, left

inferior temporal cortical thickness, left caudate intensity and left fusiform CNR. Top row, plots of each IDP for 8

subjects (coloured lines) scanned at each of 4 sites (x-axis labels); the grey violin plots indicate the distributions of the

corresponding IDP in the UK Biobank reference datase, using matched random sampling of N = 8 participants.

Box and whiskers represent inter-quartile range and 95% confidence intervals respectively. Bottom row, correlations

between each pair of sites for each IDP: upper triangle, Pearson’s correlations; lower triangle, Spearman’s correlations.

https://doi.org/10.1371/journal.pone.0273704.g002

PLOS ONE Reliability of multi-site UK Biobank MRI brain phenotypes: The COVID-CNS travelling heads study

PLOS ONE | https://doi.org/10.1371/journal.pone.0273704 September 29, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0273704.g002
https://doi.org/10.1371/journal.pone.0273704


scaling (Mauchy’s test for sphericity, P> 0.05). The GE scanner site had an impact on

between-site differences in mean value for a subset of these IDPs. However, consistency across

all sites, measured by ICCs, was generally very good for these IDPs (mean ICC >0.9) and did

not differ from ICC measures of test-retest consistency in the UKB dataset (Fig 2b). Similar

results were observed for regional cortical thickness IDPs derived from T1w and T2-FLAIR

data. There was some regional variability in between-site (and test-retest) reliability of cortical

thickness, but ICCs were typically indicative of good to very good reliability (mean ICC ~ 0.8),

matching those observed in UK Biobank.

Tissue intensity and grey-white contrast IDPs were again consistent across Siemens sites,

but for many IDPs showed significant differences at the GE site. There were significant

between-site differences in mean tissue intensity and grey-white contrast for 79% and 97%,

respectively, of regional IDPs (RM ANOVA, FDR = 5%). Sphericity tests also pointed to

altered variance at the GE site for a proportion of tissue intensity (23%) and grey-white con-

trast (34%) IDPs. Grey-white contrast measured on the GE data was generally lower than in

the Siemens data, reflecting the effects observed in the global SNR and CNR measures (Fig 1b).

Between-site reliability for these IDPs across the 3 sites using Siemens scanners was slightly

higher (mean ICC = 0.69, SD = 0.24) than between-site reliability across all 4 sites (mean

ICC = 0.61 SD = 0.23), compared to a UK Biobank mean ICC of 0.66 (SD = 0.17).

White matter hyper-intensity volumes (WMHs) derived from T2-FLAIR images of the

healthy young adults scanned in the travelling heads study were typically low, as expected in

this age range (21–37 y). However, there were significant mean differences between sites in

both deep and periventricular WMH volumes (RM ANOVA; FDR = 5%), due to greater

WMH volumes in the GE data, with correspondingly lower levels of between-site reliability

(Fig 3). There were no significant mean differences between Siemens sites in deep or periven-

tricular WMH volumes and between-site reliability for the 3 Siemens sites was very good

(ICC = 0.95, SD = 0.01), comparable to test-rest reliability in the UKB data (ICC = 0.90,

Fig 3. T2 FLAIR images and statistical results for T2-derived IDPs. A) Representative T2 FLAIR images of the same

subject scanned at each of 4 sites in the travelling heads study. B) left panel, peri-ventricular white matter

hyperintensity volume for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); right panel, correlations

between each pair of sites. C) left panel, deep white matter hyperintensity volume for 8 subjects (coloured lines)

scanned at each of 4 sites (x-axis labels); right panel, correlations between each pair of sites. In both B) and C), the

upper triangle of the matrix shows Pearson’s correlations and the lower triangle shows Spearman’s correlations; and

both IDPs were estimated using BIANCA.

https://doi.org/10.1371/journal.pone.0273704.g003
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SD = 0.06), and greater than between-site reliability over all 4 sites in the travelling heads data

(ICC = 0.51, SD = 0.12). These findings are somewhat unsurprising given that the software

tool for WMH measurement (BIANCA) was trained on data collected from the Siemens MRI

protocol. When adequate training data are available from the GE protocol, and in older sub-

jects where higher WMH volumes are expected, it will be important to retrain the BIANCA

algorithm on both Siemens and GE data, and this may improve consistency of WMH IDPs

across scanners from the different manufacturers [38].

Susceptibility weighted imaging

We assessed regional estimates of T2� signal decay and quantitative estimates of susceptibility

(QSM) derived from the swMRI images. There was limited evidence of site-specific variation

in IDP means or scaling (Fig 4a). Estimates of regional T2� had poor between-site reliability

across all 4 sites in the travelling heads data (mean ICC = 0.34, SD = 0.24) (Fig 4b). QSM-

derived IDPs had generally better between-site reliability (all sites: ICC = 0.67, SD = 0.13; Sie-

mens only sites: ICC = 0.76, SD = 0.14), comparable to good ctest-retest reliability in the UKB

data (ICC = 0.66). Lower reliability was observed for QSM IDPs measured in smaller subcorti-

cal structures (amygdala, nucleus accumbens) in both travelling heads and UKB datasets.

dMRI. Diffusion weighted images were successfully acquired and analysed at all sites.

Visualisation and basic QC metrics showed consistent image quality across sites. IDPs corre-

sponding to multiple diffusion parameters (FA, MO, MD, ICVF, ISOVF and OD) were esti-

mated regionally for each of multiple white matter tracts. As for other modalities, some IDPs

showed evidence for site-specific differences in means, driven by a difference between the Sie-

mens sites and single GE site (Fig 5a). Some WM tract ICVF (23%) and ISOVF (20%) diffusion

parameter IDPs showed evidence of non-normality. Overall, there was good to very good

between-site reliability (mean ICCs > 0.7), matching those observed in the UKB (Fig 5b). The

GE site showed limited consistency with other sites for WM tract FA, diffusivity and ISOVF,

reducing ICCs for these categories of IDPs.

fMRI. Resting fMRI was successfully acquired at all sites. There were no significant

between-site differences in mean tSNR (before or after ICA-based artefact removal with FIX),

indicating similar levels of signal quality across all sites, with QC metrics commensurate with

those observed in the UKB data (Fig 6). As individual functional connectivity (FC) IDPs

reflecting pairwise connectivity do not show a high level of reliability (see above), we assessed

6 modes of variation of functional network connectivity shown to be reliable in UKB [15]. We

also assessed individual node amplitudes. These IDPs in general did not show site-specific var-

iations in mean (Fig 6A), although two of the six (2,6) showed evidence of sphericity violations.

Between-site reliability was fair-to-good for node amplitudes (all 4 sites: mean = 0.36,

SD = 0.17; Siemens only sites, mean = 0.55, SD = 0.19), and comparable to the UKB

(mean = 0.48, SD = 0.27). The 6 RSN connectivity modes showed very good reliability, with

mean ICC = 0.67 (SD = 0.18) for all sites and ICC = 0.75 (SD = 0.25) for Siemens sites, com-

pared to the excellent reliability seen in the UKB (mean ICC = 0.89, SD = 0.11).

Arterial spin labelling. For both the single PLD sequence (acquired on all sites) and the

multi-PLD sequence (acquired on the three Siemens sites only), we assessed estimates of grey

and white matter mean perfusion. Due to acquisition challenges, ASL was not successfully

acquired at all sites for every subject (n = 6 at Cambridge), and some variation in data quality

was apparent. Estimates of CBF were higher in the single PLD sequence compared to the multi

PLD sequence, but there was no evidence of between-site mean differences in estimated perfu-

sion within the same sequence. The between-site reliability for the single PLD sequence was

fair (ICC = 0.47), but high when considering Siemens sites only ICC = 0.92. The Siemens-only
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multi PLD sequence had fair reliability, largely driven by a discrepancy in one subject across

Oxford and Liverpool acquisitions (ICC = 0.53) (Fig 7).

Discussion

This study provides a survey of the multi-site, multi-manufacturer reliability of hundreds of dis-

tinct multi-modal neuroimaging measures. For the COVID-CNS project, it provides insights

Fig 4. Statistical results for SWI-derived IDPs. In the top two panels, the left column shows data for 14 IDPs derived

from T2� data and the right column shows data for 14 IDPs derived from QSM data. A) Distribution of log-

transformed P-values from repeated measures ANOVA testing for a site effect on the mean value of individual IDPs in

each class; the solid horizontal line represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted to

the ANOVA model including data from all four sites; orange dots represent P-values for each IDP fitted to the

ANOVA including only data from the three Siemens sites (Cambridge, Oxford, Liverpool). There were more

significant between-site differences in mean IDPs when the GE data from KCL were included in the analysis B) Swarm

plots showing distribution of intra-class correlation coefficients (ICCs) for the same IDPs, estimated for each pair of all

4 sites (green points), and for each pair of the three Siemens sites (orange points). C) Each column represents finer-

grained results for representative IDPs from each class of IDP: from left to right, T2� right pallidum, QSM right

pallidum. Top row, plots of each IDP for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels). Bottom
row, correlations between each pair of sites for each IDP: upper triangle, Pearson’s correlations; lower triangle,

Spearman’s correlations.

https://doi.org/10.1371/journal.pone.0273704.g004
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that can guide the design of harmonised MRI protocols for assessment of brain changes caused

by multiple putative pathogenic mechanisms of neuropsychiatric complications of SARS-CoV2

infection. More generally, the study is of relevance to the expanding number of clinical research

studies utilising multi-modal imaging (acquisition and analysis) protocols derived from UK Bio-

bank, including a number of additional studies focused on the neurological impact of COVID-

Fig 5. Statistical results for five classes of dMRI-derived phenotypes. In the top two panels, each column represents

results for a different class of IDP, from left to right: white matter (WM) tract FA, WM tract MO, WM tract diffusivity,

WM tract ICVF, WM tract OD and WM tract ISOVF. A) Distribution of log-transformed P-values from repeated

measures ANOVA testing for a site effect on the mean value of individual IDPs in each class; the solid horizontal line

represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted to the ANOVA model including data

from all four sites; orange dots represent P-values for each IDP fitted to the ANOVA including only data from the

three Siemens sites (Cambridge, Oxford, Liverpool). There were more significant between-site differences in mean

IDPs, across all 5 classes, when the GE data from KCL were included in the analysis. B) Swarm plots showing

distribution of intra-class correlation coefficients (ICCs) for the same IDPs, estimated for each pair of all 4 sites (green

points), for each pair of the three Siemens sites (orange points) and for comparable test-retest data drawn from the

UKB cohort (blue points). Between-site reliability was generally high for all IDP classes compared to the UKB

benchmark when only Siemens sites were included in the analysis. C) Each column represents finer-grained results for

representative IDPs from each class of IDP: from left to right, FA right anterior thalamic radiation. MO left corona

radiata, L3 left cingulate gyrus, ICVF left cingulate gyrus, OD superior cerebellar peduncle, and ISOVF superior

longitudinal fasciculus. Top row, plots of each IDP for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis

labels); the grey violin plots indicate the distributions of the corresponding IDP in the UK Biobank reference dataset,

using matched random sampling of N = 8 participants. Box and whiskers represent inter-quartile range and 95%

confidence intervals respectively. Bottom row, correlations between each pair of sites for each IDP: upper triangle,

Pearson’s correlations; lower triangle, Spearman’s correlations.

https://doi.org/10.1371/journal.pone.0273704.g005

PLOS ONE Reliability of multi-site UK Biobank MRI brain phenotypes: The COVID-CNS travelling heads study

PLOS ONE | https://doi.org/10.1371/journal.pone.0273704 September 29, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0273704.g005
https://doi.org/10.1371/journal.pone.0273704


Fig 6. fMRI data quality and IDP summaries. The two columns show data on fMRI node amplitude and fMRI

connectivity IDPs. Both represent IDPs derived from 25- and 100-node ICA-based parcellations. The fMRI

connectivity IDPs represent 6 modes of variation across the functional connectivity network matrices derived from

both parcellations. A) Distribution of log-transformed P-values from repeated measures ANOVA testing for a site

effect on the mean value of individual IDPs in each class; the solid horizontal line represents the P-value equivalent to

FDR = 5%. Green dots represent IDPs fitted to the ANOVA model including data from all four sites; orange dots

represent P-values for each IDP fitted to the ANOVA including only data from the three Siemens sites (Cambridge,

Oxford, Liverpool). B) Swarm plots showing distribution of intra-class correlation coefficients (ICCs) for the same

IDPs, estimated for each pair of all 4 sites (green points), for each pair of the three Siemens sites (orange points) and

for comparable test-retest data drawn from the UKB cohort (blue points). Between-site reliability was generally high

for all IDP classes compared to the UKB benchmark, whether or not GE data were included in the analysis. C) Each

column represents finer-grained results for representative IDPs from each class of IDP: from left to right, fMRI node 4/

25 (medial visual RSN) and summary connectivity mode #3 [15]. Top row, plots of each IDP for 8 subjects (coloured

lines) scanned at each of 4 sites (x-axis labels); the grey violin plot indicates the distribution of the corresponding IDP

in the UK Biobank reference dataset. Bottom row, correlations between each pair of sites for each IDP: upper triangle,

Pearson’s correlations; lower triangle, Spearman’s correlations.

https://doi.org/10.1371/journal.pone.0273704.g006
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19 [6, 14]. Overall, our results demonstrate generally good to very good (ICCs 0.8–0.9) levels of

between-site reliability of imaging derived phenotypes estimated across a wide range of brain

MRI modalities in data collected from 4 UK sites. In particular, the 3 sites using Siemens Prisma

platforms had levels of between-site reliability that were comparable to the high levels of test-

retest reliability estimated from repeated measures on participants sampled from the UKB data-

base. When data were included from the site using a scanner supplied by a different manufac-

turer (GE), certain IDP classes had lower levels of between-site reliability, but between-site

reliability remained acceptable for most IDPs. These results give confidence that large, multi-site

studies can be used to expand the cohort sizes of neuroimaging studies for clinical research stud-

ies of COVID and other pathogenically heterogeneous disorders.

Variability in IDPs across sites may be induced by variation in the contrast obtained by spe-

cific sequences and scanner setups or technical variation in signal levels, scaling, or SNR. Trav-

elling heads studies provide a powerful means by which to detect site-specific variations in

these features in advance of multi-site population studies. In a healthy-participant travelling

heads study, ICC depends on intrinsic inter-subject variation in the travelling heads cohort to

drive measures of reliability. As such, ICC may be an imperfect measure to compare IDPs, as

between-subject variability may not reflect the observed effect size in the condition of interest

for individual IDPs (e.g. neurological effects of COVID). Nevertheless, ICCs are valuable when

it is expected that clinical effect sizes will be on the approximate scale of individual variation,

and for comparison to other datasets (e.g. UKB). While N = 8 provides limited statistical

power for the identification of subtle differences across sites in individual IDPs, here it was

able to provide an overall pattern of results indicating that there will not be substantial loss of

statistical power when introducing new sites.

Fig 7. ASL data IDP summaries. A) Grey matter mean CBF perfusion (ml/100g/min) measurements for the single

post-label delay (PLD) sequence used across all sites. B) Grey matter mean CBF perfusion measurements for the multi-

PLD sequence available only on the Siemens sites. Raw data is plotted to the left; the cross-site correlation matrices to

the right (upper triangle, Pearson’s correlation; lower triangle, Spearman’s correlation).

https://doi.org/10.1371/journal.pone.0273704.g007
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Reliability of multi-modal, multi-site MRI measurements

The between-site reliability for the 3 sites using Siemens Prisma scanners allow us to evaluate

which MRI sequences and IDPs were most (and least) operationally and statistically reliable

under the best-case scenario of nearly identical scanners at multiple sites. The most reliably

collected MRI sequences were T1w, T2-FLAIR and dMRI; the least reliably collected MRI

sequence was ASL (N> = 6). This is perhaps unsurprising given the relative novelty of these

ASL sequences, which are well-established for research at specialised centres but had not previ-

ously been used for large-scale clinical studies at all sites participating in the travelling heads

study. Further, ASL is likely to be particularly sensitive to intra- and inter-data physiological

variability affecting blood flow. With larger subject numbers, exploration of measures of rela-

tive levels of regional blood flow may identify more stable IDPs.

The most reliably estimated IDPs were geometric grey matter phenotypes (cortical volume,

surface area, thickness), and white matter microstructural phenotypes (FA, ODI etc).

Between-site reliability for these two classes of IDPs was excellent in the travelling heads data

and comparable to the ceiling level of test-retest reliability of the same classes of IDP in the

UKB dataset. Less reliably estimated IDPs were typically derived from the less reliably collected

ASL data; but all other classes of IDP had good-to-very good levels of both between-site and

test-rest reliability. It was notable that the ICCs for between-site and test-retest reliability were

positively correlated across all IDPs derived from Siemens data in the travelling heads and

UKB studies, indicating that some IDPs are inherently more robust to both between-site and

within-subject sources of variation. This may have implications for the power to detect case-

control differences in clinical studies using this set of multi-modal MRI sequences. For exam-

ple, assuming comparable effect sizes and sample sizes across modalities, T1w, T2-FLAIR and

dMRI-derived IDPs will clearly have greater power to detect case-control differences by virtue

of their lower (between-site) variability.

Between-manufacturer reliability of multi-modal MRI measurements

The GE platform increased between-site variability for many classes of IDP, showing signifi-

cant differences in mean and reductions in ICC. Clearly, this increased between-site variability

was driven by differences in MRI sequences and data between Siemens and GE scanner plat-

forms. Despite careful preparatory alignment of the GE sequences to approximate as closely as

possible the parameters of the Siemens sequences, there were some irreducible differences

between Siemens and GE protocols due to the hardware constraints of differently manufac-

tured scanners. This affected tissue contrast metrics, like grey/white matter contrast, which dif-

fered between Siemens and GE scanners, whereas geometric grey matter IDPs were generally

more robust.

The reliability of white matter hyperintensity volume estimation was notably poor when

GE data were included in the analysis, but this may be at least partly attributable to the fact

that WMH volumes were estimated in healthy young adults (not usually expected to have large

amounts of WMHs) and was using a software tool that had been trained on Siemens-only

data. Further training of WMH segmentation tools on data acquired from GE as well as Sie-

mens platforms in older subjects would likely improve the reliability of this key marker of

inflammation-related changes in white matter.

For a nationally-scaled study of post-COVID patients, these data clearly point to a trade-off

between increasing recruitment rates (and ultimately sample size) by including sites using

scanners supplied by different manufacturers versus maximising between-site reliability (and

thus reducing spurious sources of variability) by restricting sites to those that are using scan-

ners supplied by the same manufacturer. Geographical differences in the incidence of COVID,
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and in operational capacity for research studies under pandemic conditions, motivated forma-

tion of a large and nationally representative network of scanning sites. We considered that the

generally good-to-very good levels of reliability for most IDPs across all sites in this pilot study

were sufficient to support this more inclusive strategy of using sites with either Siemens or GE

scanners, with the caveat that this will entail loss of power to detect case-control differences in

terms of IDPs derived from ASL and other modalities which were most difficult to harmonise

between manufacturers. Between-site offsets in the mean and scaling of IDP values could be

corrected statistically post hoc by harmonisation or modelling methods such as COMBAT

[39] or Generalised Additive Modelling [40]. These approaches can require good numbers of

patients and controls at each site, which may limit multi-site clinical studies to sites that can

recruit good numbers of participants.

Methodological issues

It is a strength of this study that we have assessed reliability across a wide range of MRI modal-

ities and imaging-derived phenotypes, using data collected from different MRI systems and at

different sites. It is also a strength that we have been able to benchmark between-site reliability

for the majority of IDPs against comparable estimates of test-retest reliability in the UKB data.

However, sample size for the travelling heads study was small, meaning that results were

potentially vulnerable to the effects of 1 or 2 outlying observations, and confidence intervals

were generally wide. We made best efforts, under the pragmatic constraints of urgently

responding to a public health crisis, to align GE and Siemens sequences prior to data acquisi-

tion. However, we cannot claim that the between-manufacturer reliability results are perfectly

optimised or would be unimprovable by future, more intensive work on Siemens-like

sequences for sites using scanners supplied by GE or other manufacturers, to align with UKB

and C-MORE standards for COVID neuroimaging. The sample for the travelling heads experi-

mental study was considerably younger than the UK Biobank population, and the expected

COVID-CNS consortium cohort of post-hospitalisation patients. It comprised 7 females and 1

male, and additional demographic data were not obtained. While we expect the relative youth

of the travelling heads sample to have negligible impact on our assessment of between-site reli-

ability of multimodal MRI, this demographic disparity precludes more detailed comparisons

between these data and technically comparable data on the UK Biobank and COVID-CNS

cohorts. The results also indicate strong prospects for the wider integration of COVID-related

clinical neuroimaging data, particularly when sequences are reasonably aligned across studies.

Conclusion

These results represent a guide to the generally good-to-very good levels of between-site reli-

ability that are immediately attainable for multi-modal MRI across a national network of col-

laborating sites using different scanner platforms. The UK Biobank multimodal imaging

protocols, which we have translated here to other sites and scanner models, present an attrac-

tive suite of protocols for new studies to consider adopting to ensure strong reusability of data.
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