1,755 research outputs found

    Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes

    Full text link
    We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, pointing errors) for phase, amplitude and interferometric type coronagraphs. This analysis is performed at two different levels of the detection process: under residual phase left uncorrected by an eXtreme Adaptive Optics system (XAO) for a large range of Strehl ratio and after a general and simple model of speckle calibration, assuming common phase aberrations between the XAO and the coronagraph (static phase aberrations of the instrument) and non-common phase aberrations downstream of the coronagraph (differential aberrations provided by the calibration unit). We derive critical parameters that each concept will have to cope with by order of importance. We evidence three coronagraph categories as function of the accessible angular separation and proposed optimal one in each case. Most of the time amplitude concepts appear more favorable and specifically, the Apodized Pupil Lyot Coronagraph gathers the adequate characteristics to be a baseline design for ELTs.Comment: 12 pages, 6 figures, Accepted for publication in A&

    Pupil remapping for high contrast astronomy: results from an optical testbed

    Full text link
    The direct imaging and characterization of Earth-like planets is among the most sought-after prizes in contemporary astrophysics, however current optical instrumentation delivers insufficient dynamic range to overcome the vast contrast differential between the planet and its host star. New opportunities are offered by coherent single mode fibers, whose technological development has been motivated by the needs of the telecom industry in the near infrared. This paper presents a new vision for an instrument using coherent waveguides to remap the pupil geometry of the telescope. It would (i) inject the full pupil of the telescope into an array of single mode fibers, (ii) rearrange the pupil so fringes can be accurately measured, and (iii) permit image reconstruction so that atmospheric blurring can be totally removed. Here we present a laboratory experiment whose goal was to validate the theoretical concepts underpinning our proposed method. We successfully confirmed that we can retrieve the image of a simulated astrophysical object (in this case a binary star) though a pupil remapping instrument using single mode fibers.Comment: Accepted in Optics Expres

    Efficient simulation of non-crossing fibers and chains in a hydrodynamic solvent

    Get PDF
    An efficient simulation method is presented for Brownian fiber suspensions, which includes both uncrossability of the fibers and hydrodynamic interactions between the fibers mediated by a mesoscopic solvent. To conserve hydrodynamics, collisions between the fibers are treated such that momentum and energy are conserved locally. The choice of simulation parameters is rationalised on the basis of dimensionless numbers expressing the relative strength of different physical processes. The method is applied to suspensions of semiflexible fibers with a contour length equal to the persistence length, and a mesh size to contour length ratio ranging from 0.055 to 0.32. For such fibers the effects of hydrodynamic interactions are observable, but relatively small. The non-crossing constraint, on the other hand, is very important and leads to hindered displacements of the fibers, with an effective tube diameter in agreement with recent theoretical predictions. The simulation technique opens the way to study the effect of viscous effects and hydrodynamic interactions in microrheology experiments where the response of an actively driven probe bead in a fiber suspension is measured.Comment: 12 pages, 2 tables, 5 figure

    Exoplanets imaging with a Phase-Induced Amplitude Apodization Coronagraph - I. Principle

    Full text link
    Using 2 aspheric mirrors, it is possible to apodize a telescope beam without losing light or angular resolution: the output beam is produced by ``remapping'' the entrance beam to produce the desired light intensity distribution in a new pupil. We present the Phase-Induced Amplitude Apodization Coronagraph (PIAAC) concept, which uses this technique, and we show that it allows efficient direct imaging of extrasolar terrestrial planets with a small-size telescope in space. The suitability of the PIAAC for exoplanet imaging is due to a unique combination of achromaticity, small inner working angle (about 1.5 λ/d\lambda/d), high throughput, high angular resolution and large field of view. 3D geometrical raytracing is used to investigate the off-axis aberrations of PIAAC configurations, and show that a field of view of more than 100 λ/d\lambda/d in radius is available thanks to the correcting optics of the PIAAC. Angular diameter of the star and tip-tilt errors can be compensated for by slightly increasing the size of the occulting mask in the focal plane, with minimal impact on the system performance. Earth-size planets at 10 pc can be detected in less than 30s with a 4m telescope. Wavefront quality requirements are similar to classical techniques.Comment: 35 pages, 16 figures, Accepted for publication in Ap

    Digging into acceptor splice site prediction : an iterative feature selection approach

    Get PDF
    Feature selection techniques are often used to reduce data dimensionality, increase classification performance, and gain insight into the processes that generated the data. In this paper, we describe an iterative procedure of feature selection and feature construction steps, improving the classification of acceptor splice sites, an important subtask of gene prediction. We show that acceptor prediction can benefit from feature selection, and describe how feature selection techniques can be used to gain new insights in the classification of acceptor sites. This is illustrated by the identification of a new, biologically motivated feature: the AG-scanning feature. The results described in this paper contribute both to the domain of gene prediction, and to research in feature selection techniques, describing a new wrapper based feature weighting method that aids in knowledge discovery when dealing with complex datasets

    Highly selective population of spin-orbit levels in electronic autoionization of O<sub>2</sub>

    Get PDF
    The dynamics of electronic autoionization in O2 has been studied using a new apparatus which combines a free-jet supersonic expansion with synchrotron radiation. Ions and electrons were analyzed by a double time-of-flight spectrometer. The spin-orbit sublevels of the 3Πu (v=0 and 2) Rydberg states in O2 were selectively excited and the resulting O+2 final states were determined by time-of-flight photoelectron spectros copy. A strong variation of the 2Π1/2g :2Π3/2g branching ratio was observed. This variation results from the selection of a single continuum wave function in the autoionization process

    Millisecond Exoplanet Imaging, I: Method and Simulation Results

    Full text link
    One of the top remaining science challenges in astronomical optics is the direct imaging and characterization of extrasolar planets and planetary systems. Directly imaging exoplanets from ground-based observatories requires combining high-order adaptive optics with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. A limiting factor in achieving the required contrast (planet-to-star intensity ratio) is quasi-static speckles, caused largely by non-common path aberrations (NCPA) in the coronagraph. Starting with a realistic simulator of a telescope with an AO system and a coronagraph, this article provides simulations of several closely related millisecond regression models requiring inputs of the measured wavefronts and science camera images. The simplest regression model, called the naive estimator, does not treat the noise and other sources of information loss in the WFS. The naive estimator provided a useful estimate of the NCPA of \sim 0.5 radian RMS, with an accuracy of \sim 0.06 radian RMS in one minute of simulated sky time on a magnitude 8 star. The bias-corrected estimator generalizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with four minutes of sky time included an NCPA of 0.05\sim 0.05 \, radian RMS and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of 5×103\sim 5\times10^{-3} \,radian and contrast of 105\sim 10^{-5} on the exoplanet scene. In addition, the estimate of the exoplanet image was completely free of the subtraction artifacts that always plague differential imaging. The estimate of the exoplanet image obtained by the joint regression was nearly identical to the image obtained by subtraction of a perfectly known point-spread function.Comment: 16 pages, 18 Figures, 4 Tables, submitted to JOSA
    corecore