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Abstract. Local air quality forecasting can be made on the basis of 

meteorological and air pollution time series. Such data contain redundant 

information. Partial mutual information criterion is used to select the regressors 

which carry the maximal non redundant information to be used to build a 

prediction model. An application is shown regarding the forecast of PM10 

concentration with one day of advance, based on the selected features feeding 

an artificial neural network.     
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1   Introduction 

European laws require the analysis and implementation of automatic procedures to 

prevent the risk for the principal air pollutants to be above alarm thresholds in urban 

and suburban areas (e.g. the Directive 2002/3/EC for ozone or the Directive 99/30/CE 

for the particulate matter with an aerodynamic diameter of up to 10 µm called PM10).  

Two-three days forecasts of critical air pollution conditions would allow an efficient 

choice of countermeasures to safeguard citizens’ health. 

Different procedures have been developed to forecast the time evolution of air 

pollutant concentration. Meteorological data are usually included in the model as air 

pollution is highly correlated with them (Cogliani, 2001). Indeed, pollutants are 

usually entrapped into the planetary boundary layer (PBL), which is the lowest part of 

the atmosphere. It is directly influenced from soil interaction, as friction and energetic 

exchange.  

Important meteorological parameters involved in air pollution dynamics are air 

temperature, relative humidity, wind velocity and direction, atmospheric pressure, 

solar radiation and rain. Principal air pollutants whose concentration should be 

monitored are Sulphur Dioxide SO2, Nitrogen Dioxide NO2, Nitrogen Oxides NOx, 

Carbon Monoxide CO, Ozone O3 and Particulate Matter PM10. Local forecasting can 

be performed in real time and with low cost technology analyzing time series of 

weather data and air pollution concentrations. Meteorological and air pollution data 

contain redundant information. The introduction of irrelevant and redundant 
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information is detrimental for a prediction model, as the training and processing time 

are increased and noise is introduced, so that accuracy is reduced (May et al., 2008). 

Hence, a careful selection of useful predictors is needed 

In this paper, we are concerned with a specific method to perform local prediction of 

air pollution. Our analysis carries on the work already developed by the NeMeFo 

(Neural Meteo Forecasting) research project for meteorological data short-term 

forecasting (Pasero et al., 2004). Special attention is devoted to the selection of 

optimal, non redundant features (Guyon  and Elisseeff, 2003) from meteorological 

and air pollution data, decisive to describe the evolution of the system.  

Our approach for feature selection is based on the partial mutual information (PMI) 

criterion (Sharma 2000). Once selected decisive features, prediction is performed 

using an Artificial Neural Network (ANN). ANNs have been often used as a 

prognostic tool for air pollution (Perez et al., 2000; Božnar et al., 2004; Cecchetti et 

al., 2004; Slini et al., 2006; Karatzas et al., 2008).  

The method is applied on four hours hourly data, measured by a station located in the 

urban area of Goteborg, Sweden (Goteborgs Stad Miljo). The aim of the analysis is 

forecasting the average day concentration of PM10.  

2   Methods 

2.1 Input variable selection with Partial Mutual Information 

 

2.1.1 Mutual Information 

The input variable selection algorithm relies on Partial Mutual Information 

criterion first introduced by Sharma (2000). The proposed algorithm evolves the 

concept of Mutual Information (Cover and Thomas, 1991) between two random 

variables, suitable measure of dependence between signals in nonlinear systems. The 

mutual information MI(X;Y) of two random variables can be defined as the reduction 

in uncertainty with respect to Y due to observation of X. For continuous random 

variables, the MI score is defined as: 

( ; ) ( ) ( ) ( , )MI X Y H X H Y H X Y    (1) 

where H is the information entropy defined as: 

( ) ( )ln ( )Z ZH Z f z f z dz   (2) 

Mutual Information is always nonnegative and it equals zero only when X and Y are 

independent variables.  

For any given bivariate random sample, the discrete estimation of (1) can be written 

as: 
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where xi and yi are the ith bivariate sample data pair in a sample of size n, and fX(xi), 

fY(yi) and fX,Y(xi, yi) are respective univariate and joint probability-densities estimated 
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at the sample data points. Robust estimators for the joint and marginal probability 
density functions in (3) can be computed with Parzen method (Parzen, 1962; Costa et 

al., 2003): 
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where d is the number of dimension of the considered random variable and the kernel 

K was assumed as Gaussian with standard deviation h (kernel bandwidth). A major 

issue in kernel density estimation is to find the value for the bandwidth. Small values 

could lead to data under-smoothing and the resulting MI score could be noise-

sensitive thus. A large bandwidth tends to over-smooth the sample probability 

density-function and underestimate MI value consequently. Although algorithms have 

been developed to search for an optimal value of the bandwidth h, an appropriate first 

choice is given by the Gaussian reference bandwidth: 
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where  is the standard deviation of the data sample. 

 

2.1.2 Partial Mutual Information 

Optimal input set for modeling a certain system can be defined selecting the 

variables with large Mutual Information with the output. However, this raises a major 

redundancy issue because the MI criterion does not account for the interdependencies 

between candidate variables. To overcome this problem, Sharma (2000) has 

developed an algorithm that exploits the concept of Partial Mutual Information (PMI), 

which is the nonlinear statistical analog of partial correlation. It represents the 

information between two observations that is not contained in a third one.  

Let Y be an univariate random variable with observations y, X a candidate input 

with observations x, and Z the multivariate set of the input variables which have 

already been selected as predictors. The PMI score between candidate X and output Y 

is computed considering the residuals of both variables once the effects of the existing 

predictors Z have been taken into account. In other words the arbitrary dependence 

between variables is removed by computing for each x and y the residuals: 

' [ | ] ' [ | ]x x E x z y y E y z     (6) 

where E[.] denotes the regression of the chosen variable based on the predictors z 

already selected (i.e., belonging to Z). Using the kernel density estimation approach, 

the output Y can be estimated as: 
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(7) 

The regression estimator [ | ]E x z  for the candidate predictors x to be possibly included 

in Z is written analogously.  
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2.1.3 Termination criterion 

The above mentioned approach needs a criterion to assess whether each selected 

variable is indeed a significant predictor for the system output. Different methods to 

terminate the algorithm have been proposed, e.g. bootstrap estimation technique 

(Sharma, 2000) or less computationally intensive approaches (May et al., 2008).  

This work applied the Hampel test criterion, which is a modification of the Z-test 

commonly adopted to find outliers within a population of observed values (May et al., 

2008). 
 

2.2 Prediction method based on Artificial Neural Network 

The prediction algorithm was based on feedforward ANNs with a single hidden layer 

and a single output (the predicted concentration of pollutant). The hyperbolic tangent 

function was used as activation function. The Levenberg-Marquardt algorithm 

(Haykin, 1999) was used to estimate iteratively (using backpropagation) the synaptic 

weights of the ANN, minimising the sum of the squares of the deviation between the 

predicted and the target values on a training set.  

For prediction purposes, time is introduced in the structure of the neural network. 

For just further prediction, the desired output at time step n is a correct prediction of 

the value attained by the time series at time n+1: 

 1n ny w z b     (8) 

where the vector of regressors 
nz  includes information available up to the time step n. 

Selected features up to time step n were used, obtaining a non linear autoregressive 

with exogenous inputs (NARX) model (Sjöberg et al., 1994).  

3   Results 

The input selection method was tested on a dataset for the prediction of the daily 

average PM10 in Goteborg, urban area. Apart from values of  PM10 itself, other 

candidate variables were both meteorological (air temperature, relative humidity, 

atmospheric pressure, solar radiation, rainfall, wind speed and direction) and chemical 

ones (SO2, NOx, NO2, O3 and CO). Daily averages, three previous days maximum and 

minimum have been included for each variable and 24-hour cumulated variable only 

for the rain. In this way, the candidate pool was made of more than 120 features, with 

observations ranging from the beginning of 2002 to the end of 2005. First three years 

of the database have been used for selecting best input variables, while  last year 

recordings have been arranged for testing the performances of the ANN developed for 

prediction. The results of the PMI algorithm on the candidate dataset are reported in 

Fig. 1A. Only three variables were selected using Hampel test, namely the maximum, 

daily average and minimum concentration of PM10 recorded the day before.  This 

entails a drastic reduction from the original pool of candidates. 

Once the most significant features have been selected, an ANN has been developed to 

predict future values of the PM10 concentration, using the same dataset of the input 

selection algorithm for the training. The optimal ANN was found to have 8 hidden 
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neurons, and the results on the test dataset are plotted in Fig. 1B. Root mean square 

error and correlation coefficient on the test data set were respectively RMSE=6.24 

μg/m3 and CC = 0.91, showing an overall good fitting of the ANN output.   

 

Fig. 1. A) Partial mutual information scores for the 10 most significant features. The first three 

features were selected by the Hampel test. B) Comparison between the observed and predicted 

PM10 concentration. 

4   Discussion 

Coarse fraction of PM10 derives most from natural source, as wind erosion, sea salt 

spray, wood waste. Finest fraction of PM10 derives most from human activities as 

transport action or construction ones. Nitrates and sulphur dioxides are found 

predominantly in fine fraction, less than 2.5 µm in diameter. 

Our model selected previous day maximum, minimum and average concentration of 

PM10 as the most important features of which taking account in PM10 daily 

monitoring. This suggests that most of the information needed to forecast future 

values is indeed contained in the trends of the pollutant itself. In addition, two or more 

days before observations do not seem to have explaining potential for the prediction. 

Nitrates are found to have a relative high PMI, although the score is below the 

threshold for being selected. Meteorological variables have not been selected as well. 

Due to good prediction performance, this may imply that the meteorological effects as 

well as chemical interactions between the pollutants might be included in the 

information provided by the PM10 features.  
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