An efficient simulation method is presented for Brownian fiber suspensions,
which includes both uncrossability of the fibers and hydrodynamic interactions
between the fibers mediated by a mesoscopic solvent. To conserve hydrodynamics,
collisions between the fibers are treated such that momentum and energy are
conserved locally. The choice of simulation parameters is rationalised on the
basis of dimensionless numbers expressing the relative strength of different
physical processes. The method is applied to suspensions of semiflexible fibers
with a contour length equal to the persistence length, and a mesh size to
contour length ratio ranging from 0.055 to 0.32. For such fibers the effects of
hydrodynamic interactions are observable, but relatively small. The
non-crossing constraint, on the other hand, is very important and leads to
hindered displacements of the fibers, with an effective tube diameter in
agreement with recent theoretical predictions. The simulation technique opens
the way to study the effect of viscous effects and hydrodynamic interactions in
microrheology experiments where the response of an actively driven probe bead
in a fiber suspension is measured.Comment: 12 pages, 2 tables, 5 figure