Highly selective population of spin-orbit levels in electronic autoionization of O<sub>2</sub>

Abstract

The dynamics of electronic autoionization in O2 has been studied using a new apparatus which combines a free-jet supersonic expansion with synchrotron radiation. Ions and electrons were analyzed by a double time-of-flight spectrometer. The spin-orbit sublevels of the 3Πu (v=0 and 2) Rydberg states in O2 were selectively excited and the resulting O+2 final states were determined by time-of-flight photoelectron spectros copy. A strong variation of the 2Π1/2g :2Π3/2g branching ratio was observed. This variation results from the selection of a single continuum wave function in the autoionization process

    Similar works