25 research outputs found

    Solute-induced shift of phase transition temperature in Di-saturated PC liposomes: adoption of ripple phase creates osmotic stress

    Get PDF
    AbstractWe have examined the calorimetric behavior of large liposomes consisting of symmetric saturated chain phosphatidylcholines. Most notably, for systems made in solutions containing solute (e.g., NaCl, glucose, etc.) there was an additional major endotherm just below the main phase transition temperature. The new endotherm was found to represent a population of lipid whose main phase transition was shifted to lower temperature due to an induced osmotic stress across the membrane. Absent for isoosmotic systems, the osmotic stress was created when the liposome internal volume decreased, a consequence of the Lβ′ (gel) to Pβ′ (rippled) phase transition. That is, rippling of the membrane caused vesicle volume to decrease (≥28%) and because the free flow of water outward was restricted by solute, an osmotic gradient was created where none had existed before. The distribution of enthalpy between the new shifted Tm and the expected Tm correlated with the percent of lipid in the outer bilayer and it was concluded that only the outer bilayer sensed the induced stress. Internalized liposome structures were shielded, thus explaining the persistence of the expected Tm in preparations made in solute. The shift in Tm (ΔTm) was discrete and linearly dependent upon lipid chain length for the PC series di-17:0 (ΔTm≈1.4°C) through di-20:0 (ΔTm≈0.6°C), suggesting a structural change (i.e., lipid packing/orientation) was involved. Although freeze-fracture electron microscopy of stressed and unstressed bilayers revealed no differences in ripple periodicity there were differences in surface features and in vesicle shape. The fact that this phenomenon has gone unnoticed for MLVs is probably due to the fact that these systems are known to exclude solute and thus exist under osmotic compression

    History of tuberculosis is associated with lower exhaled nitric oxide levels in HIV-infected children

    Get PDF
    Objective: HIV disrupts host defense mechanisms and maintains chronic inflammation in the lung. Nitric oxide is a marker of lung inflammation and can be measured in the exhaled air. We investigated the relationship between exhaled nitric oxide (eNO), HIV status and airway abnormalities in perinatally HIV-infected children aged 6–19 years. Design: A cross-sectional study. Methods: HIV-infected individuals on antiretroviral therapy and HIV-uninfected children with no active tuberculosis (TB) or acute respiratory tract infection were recruited from a public hospital in Harare, Zimbabwe. Clinical history was collected and eNO testing and spirometry was performed. The association between eNO and explanatory variables (HIV, FEV1 z-score, CD4+ cell count, viral load, history of TB) was investigated using linear regression analysis adjusted for age, sex and time of eNO testing. Results: In total, 222 HIV-infected and 97 HIV-uninfected participants were included. Among HIV-infected participants, 57 (25.7%) had a history of past TB; 56 (25.2%) had airway obstruction, but no prior TB. HIV status was associated with lower eNO level [mean ratio 0.79 (95% confidence interval, 95% CI 0.65–0.97), P = 0.03]. Within the HIV-infected group, history of past TB was associated with lower eNO levels after controlling for age, sex and time of eNO testing [0.79 (95% CI 0.67–0.94), P = 0.007]. Conclusion: HIV infection and history of TB were associated with lower eNO levels. eNO levels may be a marker of HIV and TB-induced alteration in pulmonary physiology; further studies focused on potential causes for lower eNO levels in HIV and TB are warranted

    Characteristics of hepatitis C virus resistance in an international cohort after a decade of direct-acting antivirals

    Full text link
    Background & Aims: Direct-acting antiviral (DAA) regimens provide a cure in >95% of patients with chronic HCV infection. However, in some patients in whom therapy fails, resistance-associated substitutions (RASs) can develop, limiting retreatment options and risking onward resistant virus transmission. In this study, we evaluated RAS prevalence and distribution, including novel NS5A RASs and clinical factors associated with RAS selection, among patients who experienced DAA treatment failure. Methods: SHARED is an international consortium of clinicians and scientists studying HCV drug resistance. HCV sequence linked metadata from 3,355 patients were collected from 22 countries. NS3, NS5A, and NS5B RASs in virologic failures, including novel NS5A substitutions, were examined. Associations of clinical and demographic characteristics with RAS selection were investigated. Results: The frequency of RASs increased from its natural prevalence following DAA exposure: 37% to 60% in NS3, 29% to 80% in NS5A, 15% to 22% in NS5B for sofosbuvir, and 24% to 37% in NS5B for dasabuvir. Among 730 virologic failures, most were treated with first-generation DAAs, 94% had drug resistance in ≥1 DAA class: 31% single-class resistance, 42% dual-class resistance (predominantly against protease and NS5A inhibitors), and 21% triple-class resistance. Distinct patterns containing ≥2 highly resistant RASs were common. New potential NS5A RASs and adaptive changes were identified in genotypes 1a, 3, and 4. Following DAA failure, RAS selection was more frequent in older people with cirrhosis and those infected with genotypes 1b and 4. Conclusions: Drug resistance in HCV is frequent after DAA treatment failure. Previously unrecognized substitutions continue to emerge and remain uncharacterized. Lay summary: Although direct-acting antiviral medications effectively cure hepatitis C in most patients, sometimes treatment selects for resistant viruses, causing antiviral drugs to be either ineffective or only partially effective. Multidrug resistance is common in patients for whom DAA treatment fails. Older patients and patients with advanced liver diseases are more likely to select drug-resistant viruses. Collective efforts from international communities and governments are needed to develop an optimal approach to managing drug resistance and preventing the transmission of resistant viruses

    Screening for hepatitis C in a general adult population in a low-prevalence area: the Tromsø study

    Get PDF
    Abstract Background Chronic hepatitis C virus (HCV) infection can progress to cirrhosis and end-stage liver disease in a substantial proportion of patients. The infection is frequently asymptomatic, leaving many infected individuals unaware of the diagnosis until complications occur. This advocates the screening of healthy individuals. The aim of this study was to estimate the prevalence of HCV infection in the general adult population of the municipality of Tromsø, Norway, and to evaluate the efficiency of such an approach in a presumed low-prevalence area. Methods The study was part of the seventh survey of the Tromsø Study (Tromsø 7) in 2015–2016. Sera from 20,946 individuals aged 40 years and older were analysed for antibodies to HCV (anti-HCV). A positive anti-HCV test was followed up with a new blood test for HCV RNA, and the result of any previous laboratory HCV data were recorded. Samples positive for anti-HCV and negative for HCV RNA were tested with a recombinant immunoblot assay. All HCV RNA positive individuals were offered clinical evaluation. Results Among 20,946 participants, HCV RNA was detected in 33 (0.2%; 95% CI: 0.1–0.3), of whom 13 (39.4%; 95% CI: 22.7–56.1) were unaware of their infection. The anti-HCV test was confirmed positive in 134 individuals (0.6%; 95% CI: 0.5–0.7) with the highest prevalence in the age group 50–59 years. Current or treatment-recovered chronic HCV-infection was found in 85 individuals (0.4%; 95% CI: 0.3–0.5) and was associated with an unfavorable psychosocial profile. Conclusion In this population-based study, the prevalence of viraemic HCV infection was 0.2%. A substantial proportion (39%) of persons with viraemic disease was not aware of their infectious status, which suggests that the current screening strategy of individuals with high risk of infection may be an inadequate approach to identify chronic HCV infection hidden in the general population

    HPV-mRNA-test påviser celleforandringer

    No full text

    Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression

    No full text
    The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by <90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development

    Characteristics of polyomavirus BK (BKPyV) infection in primary human urothelial cells

    Get PDF
    High-level polyomavirus BK (BKPyV) replication in urothelial cells is a hallmark of polyomavirus-associated hemorrhagic cystitis (PyVHC), a painful condition affecting bone marrow transplant recipients. In kidney transplant recipients, replication in tubular epithelial cells is associated with overt disease whereas high-level urothelial replication is clinically silent. We characterized BKPyV replication in primary human urothelial cells (HUCs) and compared it to replication in renal tubular epithelial cells (RPTECs). HUCs were easily infected, as shown by expression of T-antigens, VP1-3, and agnoprotein, and intranuclear virion production. Compared to RPTECs, progeny release was delayed by </=24h and reduced. BKPyV-infected HUCs rounded up like "decoy cells" and detached without necrosis as shown by delayed cytokeratin-18 release, real-time viability monitoring and imaging. The data show that BKV infection of HUCs and RPTECs is significantly different and support the notion that PyVHC pathogenesis is not solely due to BKPyV replication, but likely requires urotoxic and immunological cofactors
    corecore