37 research outputs found

    Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers.

    Get PDF
    Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol-1) and elevated (700 μmol mol-1) CO2, and with two amounts of N fertilizer (none and 70 kg ha-1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.This work was funded by the Spanish ‘Plan Nacional de Investigación y Desarrollo’ (grant N° BFI2000-0871). A. Del Pozo was the recipient of a fellowship from the Spanish Ministry of Education for a sabbatical leave. R. Morcuende had a Ramón y Cajal research contract from the Spanish Ministry of Education. The technical cooperation of A.L. Verdejo in gas exchange measurements, chlorophyll and Rubisco activity determination is acknowledged. We thank the staff of the experimental farm of IRNASA for assistance in crop husbandry.Peer reviewe

    Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers.

    Get PDF
    Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol-1) and elevated (700 μmol mol-1) CO2, and with two amounts of N fertilizer (none and 70 kg ha-1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.This work was funded by the Spanish ‘Plan Nacional de Investigación y Desarrollo’ (grant N° BFI2000-0871). A. Del Pozo was the recipient of a fellowship from the Spanish Ministry of Education for a sabbatical leave. R. Morcuende had a Ramón y Cajal research contract from the Spanish Ministry of Education. The technical cooperation of A.L. Verdejo in gas exchange measurements, chlorophyll and Rubisco activity determination is acknowledged. We thank the staff of the experimental farm of IRNASA for assistance in crop husbandry.Peer reviewe

    Changes in leaf morphology and composition with future increases in CO2 and temperature revisited. Wheat in field chambers

    Get PDF
    Whether leaf morphology is altered by future increases in atmospheric CO2 and temperature has been re-examined during three years in wheat grown in field chambers at two levels of nitrogen supply. Flag leaf fresh and dry mass, area, volume, and ratios of these parameters, as well as the contents of water, chlorophyll, non-structural carbohydrates and nitrogen compounds have been determined at anthesis and 14 days later. High CO2 decreased, rather than increased as reported in the literature, leaf mass per area and leaf density, and increased water content per area and volume and water percentage. Warmer temperatures also decreased leaf mass per area, but did not affect density or water per area or volume, while they increased water percentage. Nitrogen supply did not change CO2 and temperature effects on leaf morphology. Non-structural carbohydrates increased and nitrogen compounds decreased in elevated CO2, and the sum of these compounds decreased with warmer temperatures. These changes in composition did not account for modifications of leaf morphology. We conclude that increases in atmospheric CO2 and temperature after leaf initiation can decrease leaf mass per area, and elevated CO2 can also decrease leaf density, due to decreases in leaf structural compounds. The functional significance of these changes is probably a decrease in photosynthetic capacity per unit leaf area.E.G. and D.G. were the recipients of I3P-European Social Fund and Junta de Castilla y León fellowships, respectively. We thank the staff of this Institute’s experimental farm for technical assistance in crop husbandry. This work has been funded by the Spanish National Research and Development Programme- European Regional Development Fund, ERDF (Project BFI2003-01277).Peer reviewe

    Seed Silhouettes as Geometric Objects: New Applications of Elliptic Fourier Transform to Seed Morphology

    Get PDF
    Historically, little attention has been paid to the resemblance between seed silhouettes to geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals, superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for quantification. Algebraic expressions representing the average silhouettes for a group of seeds are available, and their shape can be described and quantified by comparison with geometric models. Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric properties of the silhouettes from seed images and discuss them in the context of seed development, plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed morphology. Three groups have been recently defined among Silene species based on the structure of their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier Transform equations is useful in Silene species where the seeds are homogenous in shape but don’t adjust to described figures.Project “CLU-2019-05-IRNASA/CSIC Unit of Excellence”, funded by the Junta de Castilla y León and co-financed by the European Union (ERDF “Europe drives our growth”)

    Seed Morphology in the Vitaceae Based on Geometric Models

    Get PDF
    16 páginas, 8 figuras, 6 tablasMorphometric methods based on artificial vision algorithms provide measurements for magnitudes descriptive of seed images (i.e., the length, width, area, and surface circularity index). Nevertheless, their results frequently omit the resemblance of the images to geometric figures that may be used as models. A complementary method based on the comparison of seed images with geometric models is applied to seeds of Vitis spp. The J index gives the percentage of similarity between a seed image and the model. Seven new geometric models are described based on the heart-shaped and piriform curves. Seeds of different species, subspecies and cultivars of Vitis adjust to different models. Models 1 and 3, the heart curve and the water drop, adjust better to seeds of V. amurensis, V. labrusca and V. rupestris than to V. vinifera. Model 6, the Fibonacci’s pear, adjusts well to seeds of V. vinifera, in general, and better to V. vinifera ssp. vinifera than to V. vinifera ssp. sylvestris. Seed morphology in species of Cissus and Parthenocissus, two relatives of Vitis in the Vitaceae, is also analysed. Geometric models are a tool for the description and identification of species and lower taxonomic levels complementing the results of morphometric analysis.This research was funded by Universidad de Salamanca (Programa XIII para la financiación de grupos GIR)Peer reviewe

    Association Between Preexisting Versus Newly Identified Atrial Fibrillation and Outcomes of Patients With Acute Pulmonary Embolism

    Get PDF
    Background Atrial fibrillation (AF) may exist before or occur early in the course of pulmonary embolism (PE). We determined the PE outcomes based on the presence and timing of AF. Methods and Results Using the data from a multicenter PE registry, we identified 3 groups: (1) those with preexisting AF, (2) patients with new AF within 2 days from acute PE (incident AF), and (3) patients without AF. We assessed the 90-day and 1-year risk of mortality and stroke in patients with AF, compared with those without AF (reference group). Among 16 497 patients with PE, 792 had preexisting AF. These patients had increased odds of 90-day all-cause (odds ratio [OR], 2.81; 95% CI, 2.33-3.38) and PE-related mortality (OR, 2.38; 95% CI, 1.37-4.14) and increased 1-year hazard for ischemic stroke (hazard ratio, 5.48; 95% CI, 3.10-9.69) compared with those without AF. After multivariable adjustment, preexisting AF was associated with significantly increased odds of all-cause mortality (OR, 1.91; 95% CI, 1.57-2.32) but not PE-related mortality (OR, 1.50; 95% CI, 0.85-2.66). Among 16 497 patients with PE, 445 developed new incident AF within 2 days of acute PE. Incident AF was associated with increased odds of 90-day all-cause (OR, 2.28; 95% CI, 1.75-2.97) and PE-related (OR, 3.64; 95% CI, 2.01-6.59) mortality but not stroke. Findings were similar in multivariable analyses. Conclusions In patients with acute symptomatic PE, both preexisting AF and incident AF predict adverse clinical outcomes. The type of adverse outcomes may differ depending on the timing of AF onset.info:eu-repo/semantics/publishedVersio

    EducaFarma 11.0

    Get PDF
    Memoria ID2022-036. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2022-2023

    Educafarma 10.0

    Get PDF
    Memoria ID-030. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2021-2022

    El instrumento de observación de "Fair Play" en fútbol como herramienta para evaluar las conductas relacionadas con el juego limpio en jugadores jóvenes de fútbol

    No full text
    The current research studies behavior evolutions to Fair Play, in ten Madrid Regional teams, after developing an Interventional model to educate children and youngsters with values through football. The observational instrument for fair play in football (IOOF) developed by the UAB group of studies in sports psychology was applied, before and after the intervention. The results show that the older category players (under 13 -14 and under 15-16) carried out more contact infractions than younger players (under 9-10 and under 11-12).El presente trabajo estudia la evolución de los comportamientos hacia el fair play (juego limpio), de diez equipos de fútbol federado de la Comunidad de Madrid, después de llevar a cabo un Modelo de Intervención para educar en valores a niños y jóvenes a través del fútbol. Para ello, se aplicó el Instrumento de Observación de Fair Play en Fútbol (IOOF) desarrollado por el Grupo de Estudios de Psicología del Deporte de la UAB (Cruz et al., 1996), antes y después de la intervención. Los resultados muestran que los jugadores de categorías de mayor edad (infantil, de 13 y 14 años; y cadete, de 15 y 16 años) cometen significativamente un número mayor de faltas de contacto que los que jugadores de categorías de menor edad (benjamín, de 9 y 10 años; y alevín, de 11 y 12 años)
    corecore