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Abstract 

Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N 

concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. 

The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat 

(Triticum aestivum L.) to the N content, and possible factors affecting N gain and 

distribution within the plant were investigated in a wheat crop growing in field chambers 

set at ambient (360 µmol mol-1) and elevated (700 µmol mol-1) CO2, and with two amounts 

of N fertilizer (none and 70 kg ha-1 applied on 30 April). Photosynthesis, stomatal 

conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco 

levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in 

elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area 

decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses 

to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory 

responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N 

did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The 

decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated 

CO2 was associated with a decrease in N contents in above-ground organs and with lower N 

partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate 

accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth 

CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration 

can decrease plant N, leading to acclimation to CO2 enrichment. 

 

Key-words - Triticum aestivum L., acclimation, chlorophyll, elevated CO2, nitrogen, 

photosynthesis, Rubisco activity, stomatal conductance, transpiration. 

 

Abbreviations – An, photosynthetic carbon assimilation; E, transpiration; gs, stomatal 

conductance; Rubisco, ribulose-1, 5-bisphosphate carboxylase oxygenase. 
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Introduction 

A reduction in the photosynthetic capacity of upper-sunlit leaves has often been observed in 

C3 plants grown at elevated CO2 (Drake et al., 1997; Nakano et al., 1997; Rogers and 

Humphries, 2000; Lee et al., 2001). The loss of photosynthetic capacity in elevated CO2 has 

been attributed to a reduction in the amount and activity of ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (Rubisco) (Drake et al., 1997; Rogers and Humphries, 2000), and is 

more pronounced in conditions where growth may become sink-limited or when plants are 

grown with a low N supply (Nakano et al., 1997; Rogers et al., 1998), suggesting that N 

availability plays an important role in maintenance of photosynthetic capacity. Also, the 

stomatal conductance (gs) of sunlit leaves is severely reduced in elevated CO2-grown plants 

(Drake et al., 1997; Lodge et al., 2001; Medlyn et al., 2001; Tezara et al., 2002). With few 

exceptions (Osborne et al., 1998; Adam et al., 2000), studies on photosynthetic acclimation 

to elevated CO2 have focused on upper-sunlit leaves and little attention has been paid to the 

acclimatory responses of lower-shaded canopy leaves. In plants growing at elevated CO2, 

leaves occupying lower positions will undergo both shade-acclimation, due to the 

development of upper canopy leaves, and CO2-acclimation. As a consequence, the 

photosynthetic acclimation to elevated CO2 appears to be more pronounced in the lower-

shaded and older leaves of the canopy as compared to the uppermost and sunlit leaves 

(Osborne et al., 1998; Adam et al., 2000). Also, the acclimatory response of gs to elevated 

CO2 could differ among leaves occupying different positions within the canopy.  

CO2 enrichment often leads to decreased N concentration in leaves (Conroy and Hocking, 

1993; Stitt and Krapp, 1999) and lower N uptake (Polley et al., 1999) but for reasons that are 

far from clear. The failure of nitrogen uptake to keep pace with the increased growth rate at 

elevated CO2, or dilution of nitrogen by the accumulation of nonstructural carbohydrates 

(Stitt and Krapp, 1999) cannot provide a satisfactory explanation, particularly when the 

increases in carbohydrates and dry matter are small. Increased CO2 leads to decreased 

stomatal conductance and lower water flow due to transpiration (Stitt and Krapp, 1999). This 

may decrease the mass flow of water in the soil to the roots and decrease the availability of 

mobile nutrients such as nitrate (Conroy and Hocking, 1993; Stitt and Krapp, 1999; 

McDonald et al., 2002), although it has been argued that this will only lead to nitrate 

becoming limited in low-fertility soils (Stitt and Krapp, 1999), and in any case other factors 
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responding to CO2 enrichment can compensate for a low, transpiration-limited N supply 

(McDonald et al., 2002). 

Nitrogen nutrition not only increases the amount of nitrogen in the whole canopy but also 

affects the distribution of N among the different leaves within the canopy, which is more 

uniform at high N nutrition (Del Pozo, 1994; Dreccer et al., 2000). Accordingly, N nutrition 

could mitigate CO2-acclimation, particularly in lower-shaded leaves. Gradients in the leaf N 

content and photosynthetic capacity within the leaf canopy have been reported for several 

species (Charles-Edwards et al., 1987; Hirose et al., 1989; Lemaire et al., 1991; Evans, 1993; 

Lötscher et al., 2003; Yin et al., 2003), including wheat (Del Pozo, 1992; Dreccer et al., 

2000). Upper-sunlit leaves usually have higher photosynthetic capacity than shaded ones 

from lower positions in the canopy, which correlates with the vertical distribution of leaf 

nitrogen per unit leaf area and with light within the canopy (Del Pozo and Dennett, 1999). It 

has been found that the difference in the transpiration rate among leaves is an important 

mediator in the response of plants to the vertical light gradient. Moreover, the allocation of 

resources to leaves in a canopy responds to the rate of transpiration, regardless of light 

intensity (Pons et al., 2001).  

The aim of this study was to assess the acclimatory responses to elevated CO2 of gas 

exchange in flag and lower canopy leaves of wheat growing in the field under ventilated 

plastic chambers with different levels of N supply, and to analyze the involvement in 

acclimation of nitrogen accretion and partitioning to above-ground plant parts and the 

possible relationships between N accumulation and transpiration. 
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Materials And Methods 

Site and experimental setup 

The experimental site was located at the IRNASA Muñovela Farm at Salamanca (41° N, 800 

m.a.s.l.), Spain. The climate in Salamanca corresponds to a Mediterranean type; the long 

term average of the minimum temperatures of the coldest month (January) is 0.0 °C and of 

the maximum temperatures of the warmest month (July) it is 27.2 °C. Mean annual rainfall is 

506 mm. The soil was a clay sand, alkaline (pH 7.7), with normal levels of P, K and Ca (22, 

140 and 2800 ppm, respectively).  

Spring wheat (Triticum aestivum L. cv. Alcalá) was sown at a rate of 180 kg ha-1 and 

0.13 m between rows, on 11 February 2003. The crop was sown after turnip and no 

fertilizer was applied before sowing. The crop was watered weekly through a drip irrigation 

system and provided 198 mm between February and June, which is the average rainfall in 

the area during the experimental period. Weeds were controlled chemically.  

Two chambers of 9.6 m long, 2.2 m wide and 1.7 m high at the ridge were put in place 

after crop emergence. The chambers were adapted from Rawson et al. (1995) and have 

been described in detail elsewhere (Pérez et al., 2005). One chamber was kept at ambient 

(383±32 360 µmol mol-1) and the other at elevated (766±32 µmol mol-1) CO2 concentration 

during the light hours. Since previous work reported almost no effects of growth CO2 level 

on leaf dark respiration (Jahnke and Krewitt, 2002), the lack of CO2 enrichment during the 

night was considered irrelevant. Two levels of nitrogen supply were established by adding 

70 kg ha-1 or none to the longitudinal halves of the chambers on 30 April 2003. Therefore, 

the treatments in this experiment involved growth CO2 and nitrogen levels. Leaf gas 

exchange measurements and plant sampling were conducted in the middle module of each 

chamber, where temperature was close to ambient and homogeneous within the module. 

Fig. 1 shows the diurnal changes of air temperature, relative humidity, CO2 concentration 

and irradiance. 

 

Gas exchange measurements 

The rates of photosynthesis (An), gs and transpiration (E) measured at 360 and 700 µmol 

mol-1 CO2 were determined in attached flag and lower canopy leaves using a portable open 

system infra-red gas analyzer (CIRAS-2, PP Systems, Hitchin, Herts., UK). Three to 8 
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hours after the start of the photoperiod, measurements were performed on 1.7 cm2 leaf areas 

with a 300 ml min-1 air flow rate, at a photosynthetic photon flux density (PPFD) of 1500 

µmol m-2 s-1 and a leaf temperature of 25 ºC. Vapour pressure deficit (VPD) was 

maintained at 1.6 ± 0.23 kPa. Flag leaves were measured several times during development, 

while the 3 uppermost leaves in the canopy (flag, 5th and 4th) were measured at anthesis; 

little green area remained in leaves below these positions. For measurements, each plot was 

divided into four sampling sectors (replicates). The leaves of a replicate main shoot from 

each treatment, with treatments in random order, were measured before the next replicate, 

so that differences during the day could be included in the replicate effect in the analysis of 

variance. 

The acclimatory or long-term response and the direct or short-term response of An to 

elevated CO2 of leaves from different positions in the canopy were quantified as ratios of 

An according to Bunce (2001), and the net effect as the product of the acclimatory and the 

direct effects (Net effect = Acclimatory effect x Direct effect): 

 

 An(e,E)/An(a,A) = [An(e,E)/An(a,E)] x [An(a,E)/An(a,A)]  (1) 

 

where a and e refer to ambient (383 µmol mol-1) and elevated (766 µmol mol-1) growth 

conditions, respectively, and A and E refer to ambient (360 µmol mol-1) and elevated (700 

µmol mol-1) measurement conditions. Similar ratios were calculated for gs. 

After gas exchange measurements, the leaves of four main shoots from each sampling 

sector were rapidly transferred in situ to liquid nitrogen for the determination of chlorophyll 

content and Rubisco activity. Another seven shoots from each sector were harvested for 

leaf area, dry matter, and nitrogen determination. 

 

Dry weight, green area and nitrogen content        

The green area of leaves, last stem internode, rest of the stem and the ear were measured 

separately with an electronic planimeter (Li-3050A, Li-Cor, Lincoln, Nebraska, USA), 

dried at 60 ºC for 48 h and then weighed. After grinding in a mill and Kjeldhal digestion 

with H2SO4 using a Se catalyst, nitrogen was determined in these samples with a Bran 
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Luebbe (Hamburg, Germany) AAIII colorimetric continuous-flow analyzer, following the 

manufacturer’s method.  

 

Chlorophyll contents and Rubisco activity  

 The projected area of a subsample of frozen leaves from the various positions in the 

canopy was measured by image analysis, and then weighed and ground in liquid nitrogen. 

Chlorophyll was extracted with acetone (80%) and determined according to Arnon (1969), 

thus allowing the results to be expressed on a leaf area basis.  

For Rubisco activity, samples of the frozen leaves were ground in a mortar with liquid 

nitrogen, extracted with 100 mM Bicine-NaOH (pH 7.8), 10 mM MgCl2, 10 mM β-

mercaptoethanol and 2% polyvinylpoly-pyrrolidone (PVPP) (w/v) and then centrifuged at 

13000 g. A NADH oxidation- coupled spectrophotometric assay (Pérez et al., 2005) was 

used to determine Rubisco activity before (initial activity) and after (total activity) 

carbamylation of active sites; the activation state was estimated as initial activity, as a 

percentage of total activity. 

 

Statistical analysis 

Differences between treatments were determined through analysis of variance using a nested 

design according to Snedecor and Cochran (1967), with nitrogen as a stratum included in 

CO2, and replicate samplings as a stratum included in that for nitrogen. For flag leaves there 

were four measurement dates and for the other leaves one measurement date (at anthesis), 

and hence date or leaf position were included in the analysis as a further stratum. Additional 

details about this analysis are described in this journal by Pérez et al. (2005). Regressions 

were performed with the GenStat 6.2 statistical package. 



 8

Results 

Leaf gas exchange 

Plants grown at elevated CO2 displayed a highly significant (P < 0.01) reduction in An, gs and 

E of flag leaves, measured either at 360 or 700 µmol mol-1, relative to ambient CO2-grown 

plants (Fig. 2). N supply increased An, but decreased gs in plants grown at ambient CO2. As 

development progressed from ear emergence towards grain maturity, An, gs and E decreased 

significantly (P < 0.05) at both growth CO2 levels (Fig. 2).   

The rates of photosynthesis, transpiration and gs, all measured at 700 µmol mol-1 at 

anthesis, decreased significantly (P < 0.05) with leaf position in elevated and ambient CO2-

grown plants (Tables 1 and 2). In general, growth in elevated CO2 tended to decrease An, gs 

and E, but only the effects on E reached statistical significance (Tables 1 and 2). N supply 

had no significant effect on gs or E, but increased An significantly (P < 0.05, Table 2). 

In flag leaves, the acclimatory responses to elevated CO2 of An and gs (measured at 700 

µmol mol-1) were similar with low and high N, but in lower canopy leaves they were reduced 

with N supply (Table 3), reaching values higher than 1 in the 4th leaf, which indicates a 

positive, rather than a negative, acclimation to elevated CO2. In ambient CO2-grown plants, 

the increase in the measurement CO2 from 360 to 700 µmol mol-1 CO2 (the direct effect) 

stimulated An. Hence the net effects of elevated CO2 were a moderate decrease in An in N-

deficient plants, but an increase in An of lower canopy leaves with a high N supply (Table 3). 

Owing to the reduction in gs when the measurement CO2 increased from 360 to 700 µmol 

mol-1 CO2 (the direct effect), except in the 5th leaf in N-deficient plants, the net effect of 

elevated CO2 was a reduction in gs, which was stronger in N deficient plants (Table 3), except 

for an increase in gs in lower canopy leaves with a high N supply, similar to that observed for 

An.  

 

Chlorophyll and N contents and Rubisco activity 

The chlorophyll contents and Rubisco activities of flag and lower canopy leaves were 

significantly lower (P < 0.05) in elevated relative to ambient CO2-grown plants (Table 2, 

Figs. 3 and 4). N-deficient plants had lower (P < 0.05) chlorophyll content and Rubisco 

activity at both growth CO2 levels (Table 2, Figs. 3 and 4). Chlorophyll content and Rubisco 



 9

activity decreased with leaf position in the canopy at both growth CO2 levels (Table 2, Fig. 

4).  

On a leaf area basis, elevated CO2 decreased leaf N contents, except in 3rd leaves with a 

low N supply (Table 2, Fig. 5a). A higher N supply increased these contents in leaves above 

the 3rd one. The results on a dry-weight basis were similar, since specific leaf area was not 

affected by the growth CO2 or N supply (data not shown). Leaf N decreased downwards in 

the canopy, although a high N supply combined with elevated CO2 maintained similar N 

contents in 5th, 4th and 3rd leaves. The total nitrogen amount per shoot (Fig. 5b) decreased in 

elevated growth CO2 and with nitrogen deficiency. Elevated CO2 and nitrogen supply also 

affected the percent distribution of shoot nitrogen among organs (Fig. 5c). Thus, elevated 

CO2 increased nitrogen allocation to the ear, stem, and lower (1st and 2nd) senescent leaves. 

Conversely, elevated growth CO2 decreased the allocation of nitrogen to the flag and 5th 

leaves, while it did not affect allocation to the 4th and 3rd leaves. A higher nitrogen supply 

increased nitrogen allotment to the ear and last stem internode, decreased nitrogen allotment 

to the rest of the stem, and had no effect on nitrogen allotment to lower (1st and 2nd) senescent 

leaves. At elevated CO2, N addition did not increase the allocation of N to flag leaves, as it 

did at ambient CO2, and tended to decrease the allocation of N to 5th (penultimate) leaves. 

Significant relationships of An measured at 700 µmol mol-1 CO2 with chlorophyll 

contents and total Rubisco activities were observed, with common regressions for leaves in 

different canopy positions and growth CO2 and N supplies (Fig. 6). In turn, chlorophyll and 

total Rubisco activity were related to N contents per unit leaf area (R2 = 0.64, P<0.01 and R2= 

0.77, P<0.01, respectively; Fig. 6). We then looked at the relationship between leaf N content 

on an area basis and the transpiration rate measured at the growth CO2 concentration and high 

irradiance at anthesis. A positive relationship was found that accounted for 51 % of the 

variation in the data for all leaves, growth CO2 and N supplies (Fig. 7). Obviously, an 

estimate of accumulated transpiration of the leaf canopy, at the prevailing CO2 level and 

irradiance at the different leaf positions, would be a more realistic parameter for use in an 

analysis of the relationship between nitrogen uptake or content and transpiration. With 

transpiration rates at the growth irradiance for the different leaves in the canopy, calculated 

with a multilayer canopy model (Humphries and Long 1995), the relationship with leaf N 

was improved (63 % of variance accounted for). 
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Discussion 

Elevated CO2 caused a down-regulation or decline of photosynthetic capacity, in agreement 

with many previous reports (Stitt, 1991; Sage, 1994; Drake et al., 1997; Stitt and Krapp, 

1999; Martínez-Carrasco et al., 2005). Acclimation occurred both in upper-sunlit (flag) and in 

lower-shaded canopy leaves, among which a steep gradient in photosynthetic capacity was 

found at both growth CO2 levels. As expected, the degree of CO2-acclimation was more 

pronounced in N-stressed plants (Table 3). In addition, a noteworthy interaction of CO2 and 

N was observed; thus, in plants with an adequate N supply the acclimatory responses to 

elevated CO2 were less pronounced in lower canopy leaves relative to the flag leaf (Table 3), 

in disagreement with previous reports (Osborne et al., 1998; Adam et al., 2000). In N-

stressed plants, however, we found a greater acclimation in lower canopy leaves than in the 

flag leaf. The relationships of An to the chlorophyll concentration and Rubisco activity across 

all CO2 – nitrogen combinations in all canopy leaves (Fig. 6) suggest that the loss of 

photosynthetic capacity in elevated CO2-grown plants, as well as the gradient in An within 

the leaf canopy, were due to decreased resource availability. Chlorophyll concentration and 

Rubisco activity per unit leaf area of flag and lower canopy leaves were increased with N 

supply (Fig. 4), and they were significantly related to leaf N contents (Fig. 6), as observed in 

earlier studies (Evans, 1993; Osborne et al., 1998); this suggests that a loss of N was the 

cause of photosynthetic acclimation. Moreover, the lower acclimation to elevated CO2 in 

lower-shaded than upper-sunlit leaves with the high-N supply was associated with a smaller 

decrease in the N contents of leaves in lower positions in the stem as compared to plants 

grown in ambient CO2 (Fig. 5a). Even though N addition increased shoot N, under elevated 

CO2 it did not increase the fraction of this N allocated to leaves, as it did under ambient CO2; 

this is consistent with previous studies (Makino et al., 1997; Pérez et al., 2005). Therefore, N 

supply did not prevent photosynthetic acclimation, particularly in upper-sunlit leaves. 

Although photosynthetic acclimation to elevated CO2 has been attributed to an accumulation 

of carbohydrates that represses Rubisco gene expression (Krapp et al., 1993; Drake et al., 

1997), other studies have indicated that soluble carbohydrates are unlikely to be responsible 

for acclimation (Stitt and Krapp, 1999, Pérez et al., 2005) and have suggested a temporal shift 

in leaf ontogeny (Ludewig and Sonnewald, 2000), or nitrogen limitation (Nakano et al., 

1997; Stitt and Krapp, 1999; Pérez et al., 2005). Also, the accumulation of carbohydrate at 
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elevated CO2 did not explain the reduction in leaf nitrogen concentration per unit leaf area 

and in nitrogen uptake usually observed under elevated CO2 (Nakano et al; 1997; Polley et 

al., 1999; Lee et al., 2001; McDonald et al., 2002; Gloser et al., 2002). Alternative 

explanations for low N contents leading to acclimation of leaf photosynthesis to elevated CO2 

are required. 

At elevated CO2, leaf stomatal conductance was severely reduced (Fig. 2; Table 1), as 

reported in other studies (Drake et al., 1997; Lodge et al., 2001; Medlyn et al., 2001; Tezara 

et al., 2002). As a consequence, the transpiration rate of leaves was also reduced (Fig. 2; 

Table 1) (Senock et al., 1996; Pospisilova and Catsky, 1999) and so was total shoot N (Fig. 

5b). The nitrogen content of leaves in different canopy positions, growth CO2 levels, and N 

supplies showed a positive relationship with the transpiration rate (Fig. 7). Positive 

relationships between plant N status and transpiration have been observed previously 

(Conroy and Hocking, 1993; Polley et al., 1999; McDonald et al., 2002). Moreover, at low 

vapour pressure deficits the positive effect of elevated CO2 on plant growth and 

photosynthesis disappeared and soluble protein contents decreased, accompanied by reduced 

transpiration (De Luis et al., 2002). Transpiration can facilitate N uptake by enhancing mass 

flow to the vicinity of roots, such that decreased N levels in plants exposed to elevated CO2 

may be attributable, at least in part, to decreases in transpiration (Conroy and Hocking, 1993; 

McDonald et al., 2002). Evidence from our experiments supports this conclusion. 

An involvement of cytokinins in the delivery of xylem compounds to leaves in proportion to 

their transpiration rate has also been proposed (Pons et al., 2001). Thus, although more work 

needs to be done to clarify the role of cytokinins, and possibly other plant hormones in 

regulating photosynthetic acclimation to rising CO2 (Yong et al., 2000), a link is 

hypothesized between transpiration, cytokinins and plant N contents and allocation, which 

can account for the observed photosynthetic down-regulation under elevated growth CO2. 
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Table 1. Mean values (± S.E.) of rate of photosynthesis (An, µmol m-2 s-1), stomatal 

conductance (gs, mmol m-2 s-1) and transpiration rate (E, mmol m-2 s-1) measured at 700 

µmol mol-1 CO2 for flag, 5th and 4th leaves of wheat grown in field chambers either at 

elevated (700 µmol mol-1) or ambient (360 µmol mol-1) CO2, and at low or high 

nitrogen supply. Measurements were taken at anthesis (27 May). PPFD and temperature 

were 1500 µmol m-2 s-1 and 25 ºC, respectively. 

 

  Elevated CO2 Ambient CO2 

Parameter Leaf Low N High N Low N High N 

An Flag 14.7 ± 3.2 20.4 ± 5.3 28.1 ± 7.9 39.5 ± 3.2 

 5th 6.3 ± 3.2 18.1 ± 7.2 13.3 ± 6.9 21.6 ± 5.9 

 4th 5.1 ± 1.7 9.8 ± 2.2 11.3 ± 6.0 6.6 ± 3.4 

gs Flag 113 ± 37 122 ± 45 317 ± 144 278 ± 40 

 5th 48 ± 24 150 ± 71 181 ± 103 161 ± 55 

 4th 59 ± 19 110 ± 32 148 ± 78 35 ± 16 

E Flag 1.5 ± 0.3 1.4 ± 0.2 3.7 ±1.2 4.5 ± 0.5 

 5th 0.6 ± 0.3 1.6 ± 0.7 1.9 ± 1.1 2.8 ± 0.7 

 4th 0.9 ± 0.2 1.4 ± 0.1 1.7 ± 0.9 0.9 ± 0.4 
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TABLE 2. Analysis of variance (F-values) for rate of photosynthesis (An), leaf stomatal conductance (gs), and transpiration rate (E) 

measured at 700 µmol mol-1 CO2, chlorophyll (Chl) and leaf nitrogen (N) concentration, nitrogen amount per plant part (N part), and 

initial (IRbco) and total (TRbco) Rubisco activities of  flag, 5th and 4th leaves of wheat grown in field chambers either at elevated (700 

µmol mol-1) or ambient (360 µmol mol-1) CO2, and low or high nitrogen supply. Measurements were taken at anthesis. Numbers in 

bold type represent significant effects (P < 0.05).  

 

 An gs E Chl IRbco TRbco  N N part 

CO2 (C) 1.86 1.44 5.80 6.12 5.31 3.64 3.39 2.54 

Nitrogen (N) 4.34 0.38 1.10 65.5 9.5 59.7 44.3 42.1 

Leaf /organ (L) 11.83 3.99 5.67 3.83 13.5 38.7 267.9 330.8 

CN 0.17 0.49 0.04 3.20 1.28 4.32 3.96 0.99 

CL 2.21 2.35 3.54 0.79 1.73 4.58 38.9 15.1 

NL 1.12 0.52 0.70 0.35 0.86 2.78 16.7 18.0 

CNL 0.55 0.03 0.67 0.04 0.66 0.26 2.72 0.47 
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TABLE 3. Acclimatory [P(e,E)/P(a,E)], direct [P(a,E)/P(a,A)] and net effects 

[P(e,E)/P(a,A)] of elevated CO2 on rate of photosynthesis (An) and stomatal conductance 

(gs) for flag, 5th and 4th leaves of wheat grown in field chambers either at elevated (700 

µmol mol-1) or ambient (360 µmol mol-1) CO2,  and at low or high nitrogen supply. 

Measurements were taken at anthesis (27 May). P is An or gs. Values are means of four 

replicate  plants. See Materials and Methods for more explanations.  

 

Nitrogen Leaf  Acclimatory Direct Net effect 

supply number An gs An gs An gs 

Low Flag 0.52 0.36 1.47 0.76 0.77 0.27 

 5th 0.47 0.26 1.84 1.12 0.87 0.29 

 4th 0.45 0.40 2.17 0.69 0.97 0.27 

High Flag 0.52 0.44 1.70 0.81 0.88 0.35 

 5th 0.84 0.93 1.75 0.85 1.47 0.79 

 4th 1.49 3.16 2.11 0.74 3.14 2.33 
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Figure captions 

Fig. 1. Mean daily courses of air CO2 concentration (a), temperature (b), and humidity (d) 

in field chambers set at either ambient (360 µmol mol -1, open symbols) or elevated (700 

µmol mol -1, closed symbols) CO2. The irradiance outside (open symbols) and inside 

(closed symbols) the chambers is shown in (c) and the temperature and humidity outside 

the chambers (▲) are shown in (b) and (d). 

 

Fig. 2. Change with time in the rate of photosynthesis (a, d), stomatal conductance (b, e),  

and transpiration (c, f) measured at 350 (a, b,c) and 700 (d, e, f) µmol mol-1 CO2, of flag 

leaves of wheat grown at elevated CO2, high N ( ); elevated CO2, low N ( ); ambient 

CO2, high N ( ); and ambient CO2, low N ( ). Values are means of four replicate plants. 

PPFD and leaf temperature were 1500 µmol m-2 s-1 and 25 °C, respectively. Vertical bars 

represent standard errors of means. 

 

Fig. 3. Change with time in chlorophyll concentration (a), and initial (b) and total (c) 

Rubisco activities of flag leaves of wheat grown in field chambers either at elevated CO2, 

high N ( ); elevated CO2, low N ( ); ambient CO2, high N ( ); and ambient CO2, low N 

( ). Values are mean of four replicates. Vertical bars represent standard errors of means. 

 

Fig. 4. Mean values at anthesis of chlorophyll concentration (a, b), and initial (c, d) and 

total (e, f) Rubisco activities for flag, 5th and 4th leaves of wheat grown in field chambers 

either at elevated (shaded bars) or ambient (open bars) CO2, and low (a, c, e) or high (b, d, 

f) nitrogen supply. Values are means of four replicates. Horizontal bars represent standard 

errors of means. 

 

Fig. 5. Nitrogen content per unit leaf area (a), total nitrogen per shoot (b) and distribution of 

nitrogen between plant organs (c) at anthesis of wheat grown in field chambers either at 

ambient ( , ) or elevated ( , ) CO2, and low ( , ) or high ( , ) nitrogen supply. A, 

ambient CO2; E, elevated CO2; last internode, last stem internode. Values are means of four 

replicates. Vertical bars represent standard errors of means.   
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FIG. 6. Relationships of rate of photosynthesis (An) measured at 700 µmol mol-1 CO2 to 

chlorophyll concentration (y = 48.943x - 2.5329 R2 = 0.40) (a) and to total Rubisco activity 

(y = 0.5126x + 2.6817 R2 = 0.51) (b); and relationships of chlorophyll concentration (y = 

2.866x + 0.0106 R2 = 0.64) (c) and total Rubisco activity (y = 337.81x - 18.115 R2 = 0.77) 

(d) to leaf N concentration for flag, 5th and 4th leaves at anthesis. Wheat was grown in field 

chambers at elevated CO2, high N ( ); elevated CO2, low N ( ); ambient CO2, high N 

( ); and ambient CO2, low N ( ). For measurements of photosynthesis, PPFD and 

temperature were 1500 µmol m-2 s-1 and 25 °C, respectively. 

 

Fig. 7. Relationship between leaf N content and rate of transpiration per unit leaf area 

measured at the growth CO2 concentration for flag, 5th and 4th leaves at anthesis. Wheat was 

grown in field chambers at elevated CO2, high N ( ); elevated CO2, low N ( ); ambient 

CO2, high N ( ); and ambient CO2, low N ( ). The regression line was y = 0.0199x + 

0.0964 (R2 = 0.51). For measurements of transpiration, PPFD and temperature were 1500 

µmol m-2 s-1 and 25 °C, respectively. 
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