432 research outputs found
Enhancing Value in Medicare: Demonstrations and Other Initiatives to Improve the Program
Examines Medicare's efforts to be more proactive in the purchase of appropriate, high-quality, and efficient health care for its beneficiaries, and provides an overview of Medicare pilot programs and initiatives in chronic care and provider performance
II.3 Exposure based algorithm for removing systematics out of the CoRoT light curves
This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered
ARCHI: pipeline for light curve extraction of CHEOPS background star
High precision time series photometry from space is being used for a number
of scientific cases. In this context, the recently launched CHEOPS (ESA)
mission promises to bring 20 ppm precision over an exposure time of 6 hours,
when targeting nearby bright stars, having in mind the detailed
characterization of exoplanetary systems through transit measurements. However,
the official CHEOPS (ESA) mission pipeline only provides photometry for the
main target (the central star in the field). In order to explore the potential
of CHEOPS photometry for all stars in the field, in this paper we present
archi, an additional open-source pipeline module{\dag}to analyse the background
stars present in the image. As archi uses the official Data Reduction Pipeline
data as input, it is not meant to be used as independent tool to process raw
CHEOPS data but, instead, to be used as an add-on to the official pipeline. We
test archi using CHEOPS simulated images, and show that photometry of
background stars in CHEOPS images is only slightly degraded (by a factor of 2
to 3) with respect to the main target. This opens a potential for the use of
CHEOPS to produce photometric time series of several close-by targets at once,
as well as to use different stars in the image to calibrate systematic errors.
We also show one clear scientific application where the study of the companion
light curve can be important for the understanding of the contamination on the
main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code
available at https://github.com/Kamuish/arch
An Investigation into the Radial Velocity Variations of CoRoT-7
CoRoT-7b, the first transiting ``superearth'' exoplanet, has a radius of 1.7
R_Earth and a mass of 4.8 M_Earth. Ground-based radial velocity measurements
also detected an additional companion with a period of 3.7 days (CoRoT-7c) and
a mass of 8.4 M_Earth. The mass of CoRoT-7b is a crucial parameter for planet
structure models, but is difficult to determine because CoRoT-7 is a modestly
active star and there is at least one additional companion. A Fourier analysis
was performed on spectral data for CoRoT-7 taken with the HARPS spectrograph.
These data include RV measurements, spectral line bisectors, the full width at
half maximum of the cross-correlation function, and Ca II emission. The latter
3 quantities vary due to stellar activity and were used to assess the nature of
the observed RV variations. An analysis of a sub-set of the RV measurements
where multiple observations were made per night was also used to estimate the
RV amplitude from CoRoT-7b that was less sensitive to activity variations. Our
analysis indicates that the 0.85-d and 3.7-d RV signals of CoRoT-7b and
CoRoT-7c are present in the spectral data with a high degree of statistical
significance. We also find evidence for another significant RV signal at 9
days. An analysis of the activity indicator data reveals that this 9-d signal
most likely does not arise from activity, but possibly from an additional
companion. If due to a planetary companion the mass is m = 19.5 M_Earth,
assuming co-planarity with CoRoT-7b. A dynamical study of the three planet
system shows that it is stable over several hundred millions of years. Our
analysis yields a RV amplitude of 5.04 +/- 1.09 m/s for CoRoT-7b which
corresponds to a planet mass of m = 6.9 +/- 1.4 M_Earth. This increased mass
would make the planet CoRoT-7b more Earth-like in its internal structure.Comment: 20 pages, 20 figure
A First-Year Research Experience: The Freshman Project in Physics at Loyola University Chicago
Undergraduate research has become an essential mode of engaging and retaining students in physics. At Loyola University Chicago, first-year physics students have been participating in the Freshman Projects program for over twenty years, which has coincided with a period of significant growth for our department. In this paper, we describe how the Freshman Projects program has played an important role in advancing undergraduate research at Loyola and the profound impact it has made on our program. We conclude with suggestions for adoption of similar programs at other institutions
A phosphorus-rich polymer as a homogeneous catalyst scavenger
© The Royal Society of Chemistry 2017. A soft polymer network prepared through a phosphane-ene reaction successfully sequestered Rh and Ru from hydrogenation and ring closing metathesis reactions, respectively. Scavenging effectively quenches catalytic activity and ultimately removes \u3e98% of the metal
Removing systematics from the CoRoT light curves: I. Magnitude-Dependent Zero Point
This paper presents an analysis that searched for systematic effects within
the CoRoT exoplanet field light curves. The analysis identified a systematic
effect that modified the zero point of most CoRoT exposures as a function of
stellar magnitude. We could find this effect only after preparing a set of
learning light curves that were relatively free of stellar and instrumental
noise. Correcting for this effect, rejecting outliers that appear in almost
every exposure, and applying SysRem, reduced the stellar RMS by about 20 %,
without attenuating transit signals.Comment: Accepted for publication in Astronomy and Astrophysic
Noise properties of the CoRoT data: a planet-finding perspective
In this short paper, we study the photometric precision of stellar light
curves obtained by the CoRoT satellite in its planet finding channel, with a
particular emphasis on the timescales characteristic of planetary transits.
Together with other articles in the same issue of this journal, it forms an
attempt to provide the building blocks for a statistical interpretation of the
CoRoT planet and eclipsing binary catch to date.
After pre-processing the light curves so as to minimise long-term variations
and outliers, we measure the scatter of the light curves in the first three
CoRoT runs lasting more than 1 month, using an iterative non-linear filter to
isolate signal on the timescales of interest. The bevhaiour of the noise on 2h
timescales is well-described a power-law with index 0.25 in R-magnitude,
ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the
pre-launch specification, though still a factor 2-3 above the photon noise due
to residual jitter noise and hot pixel events. There is evidence for a slight
degradation of the performance over time. We find clear evidence for enhanced
variability on hours timescales (at the level of 0.5 mmag) in stars identified
as likely giants from their R-magnitude and B-V colour, which represent
approximately 60 and 20% of the observed population in the direction of Aquila
and Monoceros respectively. On the other hand, median correlated noise levels
over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.Comment: 5 pages, 4 figures, accepted for publication in A&
Glancing through the debris disk: Photometric analysis of DE Boo with CHEOPS
Aims. DE Boo is a unique system, with an edge-on view through the debris disk around the star. The disk, which is analogous to the Kuiper belt in the Solar System, was reported to extend from 74 to 84 AU from the central star. The high photometric precision of the Characterising Exoplanet Satellite (CHEOPS) provided an exceptional opportunity to observe small variations in the light curve due to transiting material in the disk. This is a unique chance to investigate processes in the debris disk.
Methods. Photometric observations of DE Boo of a total of four days were carried out with CHEOPS. Photometric variations due to spots on the stellar surface were subtracted from the light curves by applying a two-spot model and a fourth-order polynomial. The photometric observations were accompanied by spectroscopic measurements with the 1m RCC telescope at Piszkésteto and with the SOPHIE spectrograph in order to refine the astrophysical parameters of DE Boo.
Results. We present a detailed analysis of the photometric observation of DE Boo. We report the presence of nonperiodic transient features in the residual light curves with a transit duration of 0.3–0.8 days. We calculated the maximum distance of the material responsible for these variations to be 2.47 AU from the central star, much closer than most of the mass of the debris disk. Furthermore, we report the first observation of flaring events in this system.
Conclusions. We interpreted the transient features as the result of scattering in an inner debris disk around DE Boo. The processes responsible for these variations were investigated in the context of interactions between planetesimals in the system
- …