40 research outputs found

    The electrochemical and statistical evaluation of isolation of mellitin and apamin from honey bee (Apis Mellifera) venom.

    Get PDF
    We present in this manuscript for the first time the electrochemical and statistical evaluation of FPLC isolation of mellitin and apamin from honey bee (Apis mellifera) venom. Venoms are extremely complex blends of diverse substances that target a myriad of receptors or ion channels. Therefore, toxins, isolated from venomous organisms can be a valuable tool with diverse biological applications. In this study we decided to optimize the purification of honey bee venom by using fast protein liquid chromatography, to obtain biologically active peptide - melittin (2846.46 Da). Due to a presence of other compounds with similar molecular weight (apamin 2027.34 Da), we optimized a differential pulse voltammetry method with adsorptive transfer technique (AdT DPV), utilizing Brdicka supporting electrolyte for measurements. Typical voltammograms - fingerprints for each substance were obtained and numerical projections of voltammograms were employed to propose an artificial neural network. Our suggested neural network can simply predict the content of each peptide in fraction with following performance: 100 % for training and 100 % for testing

    Cytokine expression by CD163+ monocytes in healthy and Actinobacillus pleuropneumoniae-infected pigs

    Get PDF
    Distinct monocyte subpopulations have been previously described in healthy pigs and pigs experimentally infected with Actinobacillus pleuropneumoniae (APP). The CD163+ subpopulation of bone marrow (BM), peripheral blood (PB) and lung monocytes was found to play an important role in the inflammatory process. The inflammation is accompanied by elevation of inflammatory cytokines. The aim of the study was to evaluate the contribution of CD163+ monocytes and macrophages to cytokine production during APP-induced lung inflammation. Cytokine production was assessed by flow cytometry (FC) and quantitative PCR (qPCR) in CD163+ monocytes and by qPCR, immunohistochemistry/fluorescence in lungs and tracheobronchial lymph nodes (TBLN). Despite the systemic inflammatory response after APP infection, BM and PB CD163+ monocytes did not express elevated levels of a wide range of cytokines compared to control pigs. In contrast, significant amounts of IL-1β, IL-6, IL-8 and TNF-α were produced in lung lesions and IL-1β in the TBLN. At the protein level, TNF-α was expressed by both CD163+ monocytes and macrophages in lung lesions, whereas IL-1β, IL-6 and IL-8 expression was found only in CD163+ monocytes; no CD163+ macrophages were found to produce these cytokines. Furthermore, the quantification of CD163+ monocytes expressing the two cytokines IL-1β and IL-8 that were most elevated was performed. In lung lesions, 36.5% IL-1β positive CD163+ monocytes but only 18.3% IL-8 positive CD163+ monocytes were found. In conclusion, PB and BM CD163+ monocytes do not appear to contribute to the elevated cytokine levels in plasma. On the other hand, CD163+ monocytes contribute to inflammatory cytokine expression, especially IL-1β at the site of inflammation during the inflammatory process.Peer reviewe

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Liquid Chromatographic/Mass Spectrometric Study on the Role of Beech (Fagus sylvatica L.) Wood Polyphenols in Red Heartwood Formation

    No full text
    The present research focused on the analysis of European beech (Fagus sylvatica L.) wood polyphenols in respect to red heartwood formation, which is a significant color and technological defect of the species. For the first time, high-performance liquid chromatography/tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) were applied for the investigation of the structure and the radial distribution of polyphenols. Altogether 125 compounds were characterized by their MSn spectra, of which 71 were tentatively identified, including procyanidins (dimers to pentamers), flavonoids (taxifolin, naringenin, isorhamnetin, (epi)afzelechin), (+)-catechin, (-)-epicatechin) and their glycoside conjugates, phenolic acids (gallic acid, vanillic acid, syringic acid) and their glycosides as well as gallic acid derivatives, many of which were identified for the first time in beech wood. It was found that the concentration of many compounds increased at the color boundary. In situ polyphenol synthesis and metabolism were clearly evidenced at the color boundary. Red heartwood contained only free aglycones (syringic acid, taxifolin, naringenin, isorhamnetin, naringenin, syringic acid). Contrary to earlier assumptions, the MALDI-TOF analysis did not indicate the presence of oxidized high-molecular-weight polymeric polyphenols in the red heartwood tissues. The role of individual compounds in the formation of the red heartwood chromophores are discussed

    Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites

    Get PDF
    Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and Nethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins

    In Vitro Interactions between 17β-Estradiol and DNA Result in Formation of the Hormone-DNA Complexes

    Get PDF
    Beyond the role of 17β-estradiol (E2) in reproduction and during the menstrual cycle, it has been shown to modulate numerous physiological processes such as cell proliferation, apoptosis, inflammation and ion transport in many tissues. The pathways in which estrogens affect an organism have been partially described, although many questions still exist regarding estrogens’ interaction with biomacromolecules. Hence, the present study showed the interaction of four oligonucleotides (17, 20, 24 and/or 38-mer) with E2. The strength of these interactions was evaluated using optical methods, showing that the interaction is influenced by three major factors, namely: oligonucleotide length, E2 concentration and interaction time. In addition, the denaturation phenomenon of DNA revealed that the binding of E2 leads to destabilization of hydrogen bonds between the nitrogenous bases of DNA strands resulting in a decrease of their melting temperatures (Tm). To obtain a more detailed insight into these interactions, MALDI-TOF mass spectrometry was employed. This study revealed that E2 with DNA forms non-covalent physical complexes, observed as the mass shifts for app. 270 Da (Mr of E2) to higher molecular masses. Taken together, our results indicate that E2 can affect biomacromolecules, as circulating oligonucleotides, which can trigger mutations, leading to various unwanted effects
    corecore