123 research outputs found

    Contriving authentic interaction: task implementation and engagement in school-based speaking assessment in Hong Kong

    Get PDF
    This chapter examines the validity of the Group Interaction task in a school-based speaking assessment in Hong Kong from the perspectives of task implementation and authenticity of engagement. The new format is intended to offer a more valid assessment than the external examination by eliciting ‘authentic oral language use’ (HKEAA, 2009, p.7) in ‘low-stress conditions’ (p.3), and emphasizes the importance of flexibility and sensitivity to students’ needs in its implementation. Such a policy has then been translated into diverse assessment practices, with considerable variation in the amount of preparation time given to students. The present study draws on three types of data, namely 1) students’ discourse in the assessed interactions, 2) stimulated recall with students and teachers, and 3) a mock assessment, where the group interaction task, the preparation time, and the post-interview were all video-recorded. Results show that while the test discourse exhibits some features that ostensibly suggest authentic interaction, a closer examination of students’ pre-task planning activities reveals the contrived and pre-scripted nature of the interaction. Implications for the assessment of students’ interactional competence and recommendations for task implementation are discussed

    Thermoeconomic performance optimization of an irreversible Brayton refrigeration cycle using Gd, Gd 0.95 Dy 0.05 or Gd 0.95 Er 0.05 as the working substance

    Get PDF
    Abstract(#br)An irreversible regenerative Brayton refrigerator cycle is established, in which the nonperfect regenerator, regenerative time, heat leak, and irreversible adiabatic processes are taken into account. The mathematical expressions of the refrigeration rate, coefficient of performance, and thermoeconomic function of the refrigeration cycle are derived and the thermoeconomic function is optimized. Moreover, choosing Gd, Gd 0.95 Dy 0.05 and Gd 0.95 Er 0.05 as the working substances respectively, we discussed in detail the influences of the thermoeconomic and thermodynamic parameters on the optimal thermoeconomic and thermodynamic performances. The results show that the thermoeconomic performance of the refrigeration cycle using Gd or Gd 0.95 Dy 0.05 as the working substance is better than that using Gd 0.95 Er 0.05 and the thermoeconomic performance of the refrigeration cycle using Gd 0.95 Dy 0.05 as the working substance is better than that using Gd in the situation with the lower adiabatic magnetization

    Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process

    Get PDF
    Converting biomass into energy and fuels is considered a promising strategy for replacing the exhaustible fossil fuels. In this study, we report on a tandem process that combines cellulose pyrolysis and plasma-assisted reforming for H-2 production. The hybrid pyrolysis/plasma reforming process was carried out in a two-stage reaction system incorporating a coaxial dielectric barrier discharge (DBD) plasma reactor. The effects of discharge power, steam, reforming temperature, and catalyst on the reaction performance were investigated. The results show that low temperatures are preferred in the non-catalytic plasma reforming process, whereas high temperatures are desired to achieve a high H-2 yield and a high H-2 selectivity in the plasma-catalytic reforming system. The synergistic effect of plasma catalysis was dominant in the plasma-catalytic reforming process at 250 degrees C. In contrast, the catalyst, rather than the plasma, played a dominant role in the plasma-catalytic reforming at higher temperatures (550 degrees C). Using Ni-Co/Al(2)O3 at a reforming temperature of 550 degrees C, a high H-2 yield of 26.6 mmol/g was attainted, which was more than 8 times and about 100% greater than that obtained using plasma alone and catalyst alone, respectively. This work highlights the potential of non-thermal plasmas in lowtemperature biomass conversion.European Union [823745]; Science and Technology Ex-change Project of the Chinese Ministry of Science and Technology [2021-12-2]; Education Cooperation Project between China and Central Eastern European Countries [2021086]; British Council Newton Fund Institutional Links Grant [623389161]; Scientific and Technological Research Council of Turkey (TUBITAK) [219M123]; Chinese Scholarship Council; University of LiverpoolThis project has received the funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska Curie Grant Agreement (No. 823745) . C. Quan and N. Gao gratefully acknowledge funding from the Science and Technology Ex-change Project of the Chinese Ministry of Science and Technology (No. 2021-12-2) and the Education Cooperation Project between China and Central Eastern European Countries (No. 2021086) . X. Tu gratefully acknowledges the British Council Newton Fund Institutional Links Grant (No. 623389161) . J. Yanik gratefully acknowledges funding from the Scientific and Technological Research Council of Turkey (TUBITAK Project Contract no. 219M123) . W. Wang thanks the University of Liverpool and the Chinese Scholarship Council for funding this PhD

    Synthesis and Characterization of 40 wt % Ce₀.₉Pr₀.₁O₂−δ−60 wt % NdxSr₁₋ₓFe₀.₉Cu₀.₁O₃−δ Dual-Phase Membranes for Efficient Oxygen Separation

    Get PDF
    Dense, H₂- and CO₂-resistant, oxygen-permeable 40 wt % Ce₀.₉Pr₀.₁O₂–δ–60 wt % NdₓSr₁₋ₓFe₀.₉Cu₀.₁O₃−δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce₀.₉Pr₀.₁O₂−δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃−δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO₂ atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce₀.₉Pr₀.₁O₂−δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃−δ membrane reached up to 1.02 mL min⁻¹ cm⁻² and 0.63 mL min⁻¹ cm⁻² under an air/He and air/CO₂ gradient at T = 1223 K, respectively. In addition, a Ce₀.₉Pr₀.₁O₂–δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃–δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction–separation processes

    Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice

    Get PDF
    Manual phenotyping of rice tillers is time consuming and labor intensive and lags behind the rapid development of rice functional genomics. Thus, automated, non-destructive phenotyping of rice tiller traits at a high spatial resolution and high-throughput for large-scale assessment of rice accessions is urgently needed. In this study, we developed a high-throughput micro-CT-RGB (HCR) imaging system to non-destructively extract 730 traits from 234 rice accessions at 9 time points. We could explain 30% of the grain yield variance from 2 tiller traits assessed in the early growth stages. A total of 402 significantly associated loci were identified by GWAS, and dynamic and static genetic components were found across the nine time points. A major locus associated with tiller angle was detected at nine time points, which contained a major gene TAC1. Significant variants associated with tiller angle were enriched in the 3'-UTR of TAC1. Three haplotypes for the gene were found and rice accessions containing haplotype H3 displayed much smaller tiller angles. Further, we found two loci contained associations with both vigor-related HCR traits and yield. The superior alleles would be beneficial for breeding of high yield and dense planting

    Chinese Higher Education at the Turn of the Century : Observations from Field Trips at South-East Provinces in 2004

    Get PDF
    Since the initiation of Socialist Market policies, Chinese higher education steadily expanded its enrollment. The growth was accelerated at the end of the 1990s under a shift of governmental policy geared for achievement of mass higher education in the early years of the 21st Century. The radical shift was corresponded with dramatic changes at the institutional level with ambitious investments in infrastructure and new course designs. What are the causes of the changes? How higher education institutions have changed around the turn of the century? What are the main problems behind the changes? This report examine these questions based on the data and interviews collected through field trips at Fujian, Zhejiang and Anhui Provinces of Southeast China in early summer of 2004

    Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection

    Get PDF
    Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y pseudotuberculosis evolved to such a remarkably virulent pathogen, Y pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y pestis infection. A distinguishing characteristic between the two Yersinia species is that Y pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y pseudotuberculosis into Y pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.Peer reviewe
    corecore