11 research outputs found

    Construction and Characterization of a Chimeric Virus (BIV/HIV-1) Carrying the Bovine Immunodeficiency Virus \u3ci\u3egag\u3c/i\u3e-\u3ci\u3epol\u3c/i\u3e Gene: Research Letters

    Get PDF
    HIV-1HXB2 5′LTR region, most of BIVR29 gag-pol segment and HIV-1HXB2 pol IN-3′LTR region were respectively amplified. A chimeric clone, designated as pHBIV3753, was constructed by cloning three fragments sequentially into pUC18. MT4 cells were transfected with pHBIV3753. The replication and expressions of the chimeric virus (HBIV3753) were monitored by RT activity and IFA. The results firstly demonstrated that it is possible to generate a new type of the BIV/HIV-1 chimeric virus containing BIV gag-pol gene

    Transcriptome Analysis of Chinese Chestnut (<i>Castanea mollissima</i> Blume) in Response to <i>Dryocosmus kuriphilus</i> Yasumatsu Infestation

    No full text
    Chinese chestnut (Castanea mollissima Blume) can be infested by Dryocosmus kuriphilus Yasumatsu, resulting in gall formation and yield losses. Research on the control of gall wasps using genomics approaches is rarely reported. We used RNA-seq to investigate the dynamic changes in the genes of a chestnut species (C. mollissima B.) during four gall-formation stages caused by D. kuriphilus. A total of 21,306 genes were annotated by BLAST in databases. Transcriptome comparison between different gall-formation stages revealed many genes that were differentially expressed compared to the control. Among these, 2410, 7373, 6294, and 9412 genes were differentially expressed in four gall-formation stages: initiation stage (A), early growth stage (B), late growth stage (C), and maturation stage (D), respectively. Annotation analysis indicated that many metabolic processes (e.g., phenylpropanoid biosynthesis, secondary metabolism, plant&#8315;pathogen interaction) were affected. Interesting genes encoding putative components of signal transduction, stress response, and transcription factors were also differentially regulated. These genes might play important roles in response to D. kuriphilus gall formation. These new data on the mechanism by which D. kuriphilus infests chestnuts could help improve chestnut resistance

    Cobalt and nitrogen co-doped monolithic carbon foam for ultrafast degradation of emerging organic pollutants via peroxymonosulfate activation

    No full text
    Cobalt-based catalysts are expected as one of the most promising peroxymonosulfate (PMS) activators for the removal of organic pollutants from industrial wastewater. However, the easy agglomeration, difficult separation, and secondary pollution of cobalt ions limit their practical application. In this study, a novel, highly efficient, reusable cobalt and nitrogen co-doped monolithic carbon foam (Co-N-CMF) was utilized to activate PMS for ultrafast pollutant degradation. Co-N-CMF (0.2 g/L) showed ultrafast catalytic kinetics and higher total organic carbon (TOC) removal efficiency. Bisphenol A, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and 2,4-dichlorophenol could be completely degraded after 2, 4, 5, and 5 min, and the TOC removal efficiencies were 77.4 %, 68.9 %, 72.8 %, and 79.8 %, respectively, corresponding to the above pollution. The sulfate radical (SO4•-) was the main reactive oxygen species in Co-N-CMF/PMS based on electron paramagnetic resonance. The ecological structure-activity relationship program analysis via the quantitative structure activity relationship analysis and phytotoxicity assessment revealed that the Co-N-CMF/PMS system demonstrates good ecological safety and ecological compatibility. The Co-N-CMF catalyst has good catalytic activity and facile recycling, which provides a fine method with excellent PMS activation capacity for 2,4-dichlorophenol elimination from simulated industrial wastewater. This study provides new insights into the development of monolithic catalysts for ultrafast wastewater treatment via PMS activation
    corecore