57 research outputs found

    iTriplet, a rule-based nucleic acid sequence motif finder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides) motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing.</p> <p>Results</p> <p>We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay.</p> <p>Conclusion</p> <p>iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.</p

    Requirements for gene silencing mediated by U1 snRNA binding to a target sequence

    Get PDF
    U1 interference (U1i) is a novel method to block gene expression. U1i requires expression of a 5ā€²-end-mutated U1 snRNA designed to base pair to the 3ā€²-terminal exon of the target gene's pre-mRNA that leads to inhibition of polyadenylation. Here, we show U1i is robust (ā‰„95%) and a 10-nt target length is sufficient for good silencing. Surprisingly, longer U1 snRNAs, which could increase annealing to the target, fail to improve silencing. Extensive mutagenesis of the 10-bp U1 snRNA:target duplex shows that any single mismatch different from GU at positions 3ā€“8, destroys silencing. However, mismatches within the other positions give partial silencing, suggesting that off-target inhibition could occur. The specificity of U1i may be enhanced, however, by the fact that silencing is impaired by RNA secondary structure or by splicing factors binding nearby, the latter mediated by Arginine-Serine (RS) domains. U1i inhibition can be reconstituted in vivo by tethering of RS domains of U1-70K and U2AF65. These results help to: (i) define good target sites for U1i; (ii) identify and understand natural cellular examples of U1i; (iii) clarify the contribution of hydrogen bonding to U1i and to U1 snRNP binding to 5ā€² splice sites and (iv) understand the mechanism of U1i

    Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells

    Get PDF
    BACKGROUND: Secretion of human chorionic gonadotropin, especially its beta subunit by malignant trophoblastic tumors and varieties of tumors of different origin is now well documented; however the role of hCG in tumorogenesis is still unknown. RESULTS: This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro. The property of U1 snRNA to block the accumulation of specific RNA transcript when it binds to its donor sequence within the 3' terminal exon was used. The first 10 nucleotides of the human U1 snRNA gene, which normally binds to the 5'ss in pre-mRNA were replaced by a sequence complementary to a 10-nt segment in the terminal exon of the hCGbeta mRNA. Three different 5' end-mutated U1 snRNA expression plasmids were tested, each targeting a different sequence in the hCGbeta mRNA, and we found each one blocked the expression of hCGbeta in HeLa cells, a cervix carcinoma cell line, as shown by immunohistochemistry and qRT-PCR. Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process. CONCLUSION: These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor

    The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma.

    Get PDF
    Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRĪ². In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma

    Long Conserved Fragments Upstream of Mammalian Polyadenylation Sites

    Get PDF
    Polyadenylation is a cotranscriptional nuclear RNA processing event involving endonucleolytic cleavage of the nascent, emerging pre-messenger RNA (pre-mRNA) from the RNA polymerase, immediately followed by the polymerization of adenine ribonucleotides, called the poly(A) tail, to the cleaved 3ā€² end of the polyadenylation site (PAS). This apparently simple molecular processing step has been discovered to be connected to transcription and splicing therefore increasing its potential for regulation of gene expression. Here, through a bioinformatic analysis of cis-PASā€“regulatory elements in mammals that includes taking advantage of multiple evolutionary time scales, we find unexpected selection pressure much further upstream, up to 200 nt, from the PAS than previously thought. Strikingly, close to 3,000 long (30ā€“500 nt) noncoding conserved fragments (CFs) were discovered in the PAS flanking region of three remotely related mammalian species, human, mouse, and cow. When an even more remote transitional mammal, platypus, was included, still over a thousand CFs were found in the proximity of the PAS. Even though the biological function of these CFs remains unknown, their considerable sizes makes them unlikely to serve as protein recognition sites, which are typically ā‰¤15 nt. By harnessing genome wide DNaseI hypersensitivity data, we have discovered that the presence of CFs correlates with chromatin accessibility. Our study is important in highlighting novel experimental targets, which may provide new understanding about the regulatory aspects of polyadenylation

    Common and unique transcription factor requirements of human U1 and U6 snRNA genes

    Get PDF
    13 pages, 7 figures.-- PMID: 8253082 [PubMed].-- PMCID: PMC413633.The human U1 and U6 genes have similar basal promoter structures. A first analysis of the factor requirements for the transcription of a human U1 gene by RNA polymerase II in vitro has been undertaken, and these requirements compared with those of human U6 gene transcription by RNA polymerase III in the same extracts. Fractions containing PSE-binding protein (PBP) are shown to be essential for transcription of both genes, and further evidence that PBP itself is required for U1 as well as U6 transcription is presented. On the other hand, the two genes have distinct requirements for TATA-binding protein (TBP). On the basis of chromatographic and functional properties, the TBP, or TBP complex, required for U1 transcription appears to differ from previously described complexes required for RNA polymerase I, II or III transcription. The different TBP requirements of the U1 and U6 promoters are reflected by specific association with either TFIIB or TFIIIB respectively, thus providing a basis for differential RNA polymerase selection.We wish to thank Henk Stunnenberg, Dirk Bohmann, Francis Stewart and Peter Becker for comments on the manuscript, Jacky Schmidt and H.Stunnenberg for helpful suggestions and plasmids, the EMBL photolab, Susie Weston and Sam O'Loughlin for efficient oligonucleotide synthesis, and Maryka Kimmins and Fiona Berrie for typing the manuscript. We are particularly grateful to all other members of the group for constructive criticism and suggestions. J.B. was supported by an EEC fellowship, J.D.L. by a Human Frontiers Science Program fellowship and S.I.G. by an Alexander von Humboldt fellowship.Peer reviewe

    U1A Inhibits Cleavage at the Immunoglobulin M Heavy-Chain Secretory Poly(A) Site by Binding between the Two Downstream GU-Rich Regions

    No full text
    The immunoglobulin M heavy-chain locus contains two poly(A) sites which are alternatively expressed during B-cell differentiation. Despite its promoter proximal location, the secretory poly(A) site is not expressed in undifferentiated cells. Crucial to the activation of the secretory poly(A) site during B-cell differentiation are changes in the binding of cleavage stimulatory factor 64K to GU-rich elements downstream of the poly(A) site. What regulates this change is not understood. The secretory poly(A) site contains two downstream GU-rich regions separated by a 29-nucleotide sequence. Both GU-rich regions are necessary for binding of the specific cleavage-polyadenylation complex. We demonstrate here that U1A binds two (AUGCN(1-3)C) motifs within the 29-nucleotide sequence and inhibits the binding of cleavage stimulatory factor 64K and cleavage at the secretory poly(A) site
    • ā€¦
    corecore