256 research outputs found
First-principles characterization of Mg low-index surfaces: Structure, reconstructions, and surface core-level shifts
In this paper, first-principles calculations provide structural characterization of three low-index Mg surfaces - Mg(0001), Mg(1010), and Mg(1120) - and their respective surface core-level shifts (SCLSs). Inspired by the close similarities between Be and Mg surfaces, we also explore the reconstruction of Mg(1120). Through the calculation of surface energies and the use of the angular-component decomposed density of states, we show that reconstructions are likely to occur at the Mg(1120) surface, similarly to what was found earlier for Be(1120). Indeed, the surface energy of some of the explored reconstructions is slightly lower than that of the unreconstructed surface. In addition, because of lattice symmetry, the morphology of the unreconstructed surface (1120) results in a steplike zig-zag chain packing, with topmost chains supporting a resonant, quasi-one-dimensional (1D), partially filled electronic state. As the presence of partially filled quasi-1D bands is a necessary condition for Peierls-like dimerization, we verify that the undimerized surface chain remains stable with respect to it. Some of the reconstructions, namely, the 2
71 and 3
71 added row reconstructions, induce a stronger relaxation of the topmost chains, increasing the coupling with lower layers and thus significantly damping the quasi-1D character of this state. The original approach followed offers a common and general framework to identify quasi-1D bands - even in the case of resonant electronic surface states - and to meaningfully compare calculated and measured SCLSs even in the presence of multicomponent peak contributions
Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress
AbstractMultiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Δ 9−desaturase and Δ12−desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution
Redefinition of Aureobasidium pullulans and its varieties
Using media with low water activity, a large numbers of aureobasidium-like
black yeasts were isolated from glacial and subglacial ice of three
polythermal glaciers from the coastal Arctic environment of Kongsfjorden
(Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and
glacial meltwaters. To characterise the genetic variability of
Aureobasidium pullulans strains originating from the Arctic and
strains originating pan-globally, a multilocus molecular analysis was
performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and
partial introns and exons of genes encoding β-tubulin (TUB),
translation elongation factor (EF1α) and elongase
(ELO). Two globally ubiquitous varieties were distinguished: var.
pullulans, occurring particularly in slightly osmotic substrates and
in the phyllosphere; and var. melanogenum, mainly isolated from
watery habitats. Both varieties were commonly isolated from the sampled Arctic
habitats. However, some aureobasidium-like strains from subglacial ice from
three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to
represent a new variety of A. pullulans. A strain from dolomitic
marble in Namibia was found to belong to yet another variety. No molecular
support has as yet been found for the previously described var.
aubasidani. A partial elongase-encoding gene was successfully used as
a phylogenetic marker at the (infra-)specific level
Fungal contaminants: a paradoxal void in safety regulation of drinking water and recreational areas
Objectives: The United Nations sustainable development goal #3, aims to “By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination” (New York, September 2015). This study’s objective is to assess the European drinking and bathing water regulations and detect missing fungal parameters that may affect human health.info:eu-repo/semantics/publishedVersio
Recommended from our members
Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance
Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes
Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance
Halophilic adaptations have been studied almost exclusively on prokaryotic
microorganisms. Discovery of the black yeast Hortaea werneckii as the
dominant fungal species in hypersaline waters enabled the introduction of a
new model organism to study the mechanisms of salt tolerance in eukaryotes.
Its strategies of cellular osmotic adaptations on the physiological and
molecular level revealed novel, intricate mechanisms to combat fluctuating
salinity. H. werneckii is an extremely halotolerant eukaryotic
microorganism and thus a promising source of transgenes for osmotolerance
improvement of industrially important yeasts, as well as in crops
A novel c.-22T>C mutation in GALK1 promoter is associated with elevated galactokinase phenotype
<p>Abstract</p> <p>Background</p> <p>Many genetic variations of <it>GALK1 </it>have been identified in the patients with galactokinase (GALK1) deficiency. However, the molecular characteristics of <it>GALK1 </it>in individuals with elevated GALK1 activity are relatively unknown.</p> <p>Methods</p> <p>We investigated the relationship between elevated GALK1 activity and the molecular <it>GALK1 </it>gene variations, and the molecular mechanism underlying elevated GALK1 activity. PCR products from 63 subjects, without any attenuation of galactose degradation enzymes, were sequenced to screen for nucleotide alterations in the <it>GALK1 </it>promoter.</p> <p>Results</p> <p>Three nucleotide substitutions were identified: c.-179A>G, c.-27A>C, and c.-22T>C. With respect to the c.-22T>C mutation, GALK1 activity in 13 subjects with the T/C or C/C genotype was significantly higher than those in 50 subjects with the T/T genotype (p < 0.001). The dual luciferase reporter assay in Hep3B cells showed that the luciferase activity with the <it>GALK1 </it>promoter with the c.-22C mutant allele increased approximately 2.5-fold, compared to that with the c.-22T. A specific DNA-protein complex was observed in an electrophoretic mobility shift assay, with slightly higher affinity to c.-22C than to c.-22T.</p> <p>Conclusion</p> <p>The c.-22T>C mutation, which was observed frequently in individuals with elevated GALK1 activity, increased the expression of a reporter gene through enhanced binding of a currently unidentified nuclear protein. These results suggest that the elevated GALK1 activity resulted from enhanced gene expression, due to nucleotide variation within <it>GALK1 </it>promoter.</p
Optical properties of exfoliated MoS2 coaxial nanotubes - analogues of graphene
We report on the first exfoliation of MoS2 coaxial nanotubes. The single-layer flakes, as the result of exfoliation, represent the transition metal dichalcogenides' analogue of graphene. They show a very low degree of restacking in comparison with exfoliation of MoS2 plate-like crystals. MoS2 monolayers were investigated by means of electron and atomic force microscopies, showing their structure, and ultraviolet-visible spectrometry, revealing quantum confinement as the consequence of the nanoscale size in the z-direction
- …