176 research outputs found

    Residual stress measurements on a deep rolled aluminum specimen through X-Ray Diffraction and Hole-Drilling, validated on a calibration bench

    Get PDF
    Residual stress measurements are notably affected by a high sensitivity to errors in input data. Measurements should then be presented together with an estimation of their accuracy. A common strategy is to carry out more measurements and/or to compare the results of different techniques. However, error contributions due to biases could be dangerously left unseen. In a previous work, the authors presented a calibration bench which can impose a known bending stress distribution on a specimen while simultaneously performing X-Ray Diffraction (XRD) or Hole-Drilling Method (HDM) residual stress measurements. Since the external load can freely be applied and removed, the superposition principle can be exploited to simultaneously identify either the reference bending stress distribution or the actual residual stress distribution, with the same experimental setup. A deep rolling treatment was measured and analyzed on the calibration bench with both XRD and HDM. First, residual stresses on the surface were evaluated with XRD measurements, then electrochemical material removal was performed to investigate stresses at higher depths. After that, HDM measurements were carried out and compared with the results of XRD. Both methods were also used to identify the known bending stresses, providing an additional validation of the residual stress results

    Alcohol-induced blood-brain barrier impairment: An in vitro study

    Get PDF
    In recent years, alcohol abuse has dramatically grown with deleterious consequence for people’s health and, in turn, for health care costs. It has been demonstrated, in humans and animals, that alcohol intoxication induces neuroinflammation and neurodegeneration thus leading to brain impairments. Furthermore, it has been shown that alcohol consumption is able to impair the blood– brain barrier (BBB), but the molecular mechanisms underlining this detrimental effect have not been fully elucidated. For this reason, in this study we investigated the effects of alcohol exposure on a rat brain endothelial (RBE4) cell line, as an in vitro-validated model of brain microvascular endothelial cells. To assess whether alcohol caused a concentration-related response, the cells were treated at different times with increasing concentrations (10–1713 mM) of ethyl alcohol (EtOH). Microscopic and molecular techniques, such as cell viability assay, immunofluorescence and Western blotting, were used to examine the mechanisms involved in alcohol-induced brain endothelial cell alterations including tight junction distribution, apoptosis, and reactive oxygen species production. Our findings clearly demonstrate that alcohol causes the formation of gaps between cells by tight junction disassembly, triggered by the endoplasmic reticulum and oxidative stress, highlighted by GRP78 chaperone upregulation and increase in reactive oxygen species production, respectively. The results from this study shed light on the mechanisms underlying alcohol-induced blood–brain barrier dysfunction and a better understanding of these processes will allow us to take advantage of developing new therapeutic strategies in order to prevent the deleterious effects of alcohol

    Cannabidiol protects dopaminergic neuronal cells from cadmium

    Get PDF
    The protective effect of cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, against neuronal toxicity induced by cadmium chloride (CdCl2 10 μM) was investigated in a retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cell line. CBD (1 μM) was applied 24 h before and removed during cadmium (Cd) treatment. In differentiated neuronal cells, CBD significantly reduced the Cd-dependent decrease of cell viability, and the rapid reactive oxygen species (ROS) increase. CBD significantly prevented the endoplasmic reticulum (ER) stress (GRP78 increase) and the subcellular distribution of the cytochrome C, as well as the overexpression of the pro-apoptotic protein BAX. Immunocytochemical analysis as well as quantitative protein evaluation by western blotting revealed that CBD partially counteracted the depletion of the growth associated protein 43 (GAP43) and of the neuronal specific class III β-tubulin (β3 tubulin) induced by Cd treatment. These data showed that Cd-induced neuronal injury was ameliorated by CBD treatment and it was concluded that CBD may represent a potential option to protect neuronal cells from the detrimental effects of Cd toxicity

    Intrusion Detection in Industrial Networks via Data Streaming

    Get PDF
    Given the increasing threat surface of industrial networks due to distributed, Internet-of-Things (IoT) based system architectures, detecting intrusions in\ua0 Industrial IoT (IIoT) systems is all the more important, due to the safety implications of potential threats. The continuously generated data in such systems form both a challenge but also a possibility: data volumes/rates are high and require processing and communication capacity but they contain information useful for system operation and for detection of unwanted situations.In this chapter we explain that\ua0 stream processing (a.k.a. data streaming) is an emerging useful approach both for general applications and for intrusion detection in particular, especially since it can enable data analysis to be carried out in the continuum of edge-fog-cloud distributed architectures of industrial networks, thus reducing communication latency and gradually filtering and aggregating data volumes. We argue that usefulness stems also due to\ua0 facilitating provisioning of agile responses, i.e. due to potentially smaller latency for intrusion detection and hence also improved possibilities for intrusion mitigation. In the chapter we outline architectural features of IIoT networks, potential threats and examples of state-of-the art intrusion detection methodologies. Moreover, we give an overview of how leveraging distributed and parallel execution of streaming applications in industrial setups can influence the possibilities of protecting these systems. In these contexts, we give examples using electricity networks (a.k.a. Smart Grid systems).We conclude that future industrial networks, especially their Intrusion Detection Systems (IDSs), should take advantage of data streaming concept by decoupling semantics from the deployment

    Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU

    Get PDF
    Magnetic Clouds (MCs) are a particular subset of Interplanetary Coronal Mass Ejections (ICMEs), forming large scale magnetic flux ropes. In this work we analyze the evolution of a particular MC (observed on March 1998) using {\it in situ} observations made by two spacecraft approximately aligned with the Sun, the first one at 1 AU from the Sun and the second one at 5.4 AU. We study the MC expansion, its consequent decrease of magnetic field intensity and mass density, and the possible evolution of the so-called global ideal-MHD nvariants. We describe the magnetic configuration of the MC at both spacecraft using different models and compute relevant global quantities (magnetic fluxes, helicity and energy) at both helio-distances. We also track back this structure to the Sun, in order to find out its solar source. We find that the flux rope is significantly distorted at 5.4 AU. However, we are able to analyze the data before the flux rope center is over-passed and compare it with observations at 1 AU. From the observed decay of magnetic field and mass density, we quantify how anisotropic is the expansion, and the consequent deformation of the flux rope in favor of a cross section with an aspect ratio at 5.4 AU of ≈1.6\approx 1.6 (larger in the direction perpendicular to the radial direction from the Sun). We quantify the ideal-MHD invariants and magnetic energy at both locations, and find that invariants are almost conserved, while the magnetic energy decays as expected with the expansion rate found. The use of MHD invariants to link structures at the Sun and the interplanetary medium is supported by the results of this multispacecraft study. We also conclude that the local dimensionless expansion rate, that is computed from the velocity profile observed by a single spacecraft, is very accurate for predicting the evolution of flux ropes in the solar wind.Comment: 16 two-column pages, 8 figures. Accepted for publication in A&
    • …
    corecore