72 research outputs found

    Identification, cloning, expression and functional interrogation of the biosynthetic pathway of the polychlorinated triphenyls ambigol A-C fromFischerella ambigua108b

    Get PDF
    The terrestrial cyanobacteriumFischerella ambigua108b produces the three polychlorinated triphenyls ambigol A-C that exhibit interesting antimicrobial, antiviral and cytotoxic activities. They are structurally related to polybrominated diphenylethers synthesized by diverse marine bacteria that are known to be highly toxic and are bioaccumulating in natural food webs. All ambigols display unusual connectivities: Ambigols A and B exhibit chlorination and ambigol C biaryl-ether bonds in the relativemetaposition at the central phenol unit, which is flanked by two 2,4-dichlorophenol units in all three compounds. Here we report on the identification of the biosynthetic gene cluster (BGC) reponsible for ambigol production inF. ambigua. After bioinformatic discovery of a putative ambigol BGC (ab) containing 10 genes, we cloned and heterologously expressed this cluster inSynechococcus elongatusPCC 7942 using Direct Pathway Cloning (DiPaC).In vivoandin vitrocharacterization of the two cytochrome P450 enzymes present in theabBGC revealed complementary selectivity for either biaryl-ether bond (Ab2) or biaryl formation (Ab3) and provided a biosynthetic route to the ambigols

    Biofilm-inhibiting effect and anti-infective activity of N,C-linked aryl isoquinolines and the use thereof

    Get PDF
    Anti-infective and biofilm-inhibiting activities of aryl isoquinoline-derivatives of the general formulae 1 to 3 Figure US08173673-20120508-C00001 are described

    Investigation of the Soot Formation in Ethylene Laminar Diffusion Flames When Diluted with Helium or Supplemented by Hydrogen

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy and Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ef401970qA new optical diagnostic technique has been used to measure the spatially distributed temperatures, soot diameters, and soot volume fractions in several different ethylene laminar diffusion flames to investigate the effect of adding hydrogen and helium on the soot formation. The test results show that adding hydrogen increases the flame temperature in all regions, while adding helium does not significantly affect the flame temperature in the reaction region but does increase the flame temperature elsewhere. The flame heights when adding helium and hydrogen can be calculated using the correlation introduced by Roper if the ethylene diffusion coefficient is used. This indicates that the flame height is determined by the diffusion of ethylene molecules when the hydrogen fraction is below 20%. It was also found that either adding helium or hydrogen does not significantly affect the soot diameter but does reduce the soot volume fraction. A total of 20% of helium addition by volume was measured to reduce the total soot number by 19%, while a total of 20% of hydrogen addition reduced the total soot number by 23%. In comparison, replacing the hydrocarbon with hydrogen is much more effective in reducing soot formation. Replacement of 25% ethylene by hydrogen was measured to reduce the total soot number by 66%. Apart from demonstrating the influence of hydrogen and helium on ethylene diffusion flames, these measurements provide additional data for modelers of diffusion flames, especially those with an interest in the formation of particulate matter. © 2014 American Chemical Society

    A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity.

    Get PDF
    Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota

    The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity

    Get PDF
    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery

    Full text link
    This review covers the initial discovery of the marine actinomycete genus Salinispora through its development as a model for natural product research. A focus is placed on the novel chemical structures reported with reference to their biological activities and the synthetic and biosynthetic studies they have inspired. The time line of discoveries progresses from more traditional bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target the products of specific biosynthetic gene clusters. This overview exemplifies the extraordinary biosynthetic diversity that can emanate from a narrowly defined genus and supports future efforts to explore marine taxa in the search for novel natural products

    Directed synthesis of all four pure stereoisomers of the N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A

    No full text
    The first preparation of the N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A and its likewise naturally occurring minor atropisomer, in an atropisomerically pure form, is described. The synthesis succeeded by resolution of the already rotationally hindered, and thus atropo-diastereomeric acetamide precursors, which were then, without major loss of stereochemical information, cyclized to the respective target molecules. The strategy was applied to the first synthesis of the regioisomeric product ancistrocladinium D, likewise in a stereochemically pure form
    • …
    corecore