14 research outputs found

    Axitinib inhibits retinal and choroidal neovascularization in in vitro and in vivo models

    Get PDF
    AbstractAge-related Macular Degeneration (AMD) is the leading cause of visual impairment and blindness in the elderly in developed countries. Neovascular/exudative (wet) AMD is the aggressive form of AMD and can involve choroidal neovascularization and vascular leakage. Anti-vascular endothelial growth factor (anti-VEGF) medications have significantly improved treatment of wet-AMD. However, only approximately 40% of patients obtain full benefit from anti-VEGF therapy and the medications are given by intravitreal injection. Axitinib, a small molecule multi-receptor tyrosine kinase inhibitor used for the treatment of advanced renal cell carcinoma, is taken orally and inhibits VEGF activity by blocking VEGF receptors. Axitinib also has the advantage of blocking platelet derived growth factor (PDGF) receptors which play a role in neovascularization. Using in vitro human retinal microvascular endothelial cells (HRMVECs), human brain vascular pericytes (HBVRs), 3D co-culture vessel sprout assay, and in vivo laser induced rat choroidal neovascularization (CNV) models, the effect of axitinib on neovascularization was evaluated. Axitinib inhibited neovascularization better than anti-VEGF and/or anti-hPDGF-B mAb in the in vitro models demonstrating that combined inhibition of both VEGF and PDGF pathways may be synergistic in treating wet-AMD. Additionally, axitinib showed good efficacy at a low dose (0.875 mg/day) in laser-induced CNV model in rats. In conclusion our data shows that axitinib, an inhibitor of VEGF and PDGF-B pathways may be useful in ameliorating wet-AMD therapy

    Presentation_1_Oral administration of VDAC1-derived small molecule peptides increases circulating testosterone levels in male rats.pdf

    No full text
    Cholesterol is the precursor of all steroid hormones, and the entry of cholesterol into the mitochondria is the rate-limiting step of steroidogenesis. Voltage-dependent anion channel (VDAC1) is an outer mitochondrial protein part of a multiprotein complex that imports cholesterol. We previously reported that intratesticular administration of a 25 amino acid peptide blocking the interaction between 14-3-3ϵ with VDAC1 increased circulating levels of testosterone. This fusion peptide was composed of a HIV-1 transactivator of transcription (TAT) protein transduction domain cell-penetrating peptide, a glycine linker, and amino acids 159-172 of VDAC1 (TV159-172). Here, we describe the development of a family of small molecules that increase circulating testosterone levels after an oral administration. We first characterized an animal model where TV159-172 was delivered subcutaneously. This subcutaneous model allowed us to study the interactions between TV159-172 and the hypothalamus-pituitary-gonadal axis (HPG) and identify the biologically active core of TV159-172. The core consisted of the tetrapeptide RVTQ, which we used as a platform to design synthetic peptide derivatives that can be administered orally. We developed a second animal model to test various derivatives of RVTQ and found 11 active compounds. Dose-response experiments identified 4 synthetic peptides that robustly increased androgen levels in a specific manner. We selected RdVTQ as the leading VDAC1-core derivative and profiled the response across the lifespan of Brown-Norway rats. In summary, we present the development of a new class of therapeutics that act within the HPG axis to increase testosterone levels specifically. This new class of small molecules self-regulates, preventing abuse.</p

    Pioneering computational culture within pharmacy schools by empowering students with data science and bioinformatics skills

    No full text
    As advancements in digital health lead to the generation of increasingly diverse and voluminous pharmaceutical data, it is increasingly critical that we teach trainee pharmaceutical scientists how to leverage this data to lead future innovations in healthcare and pharmaceutical research. To address this need, the University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences (USC Mann) is incorporating data science and bioinformatics into the graduate and undergraduate curricula through introductory courses tailored for students without prior programming experience. These courses feature a teaching framework designed to make the fundamentals of data science and bioinformatics accessible to pharmacy students through step-by-step, Jupyter-based coding assignments with examples relevant to the pharmaceutical sciences. Here, we outline the design of our framework, discussing the strategies we developed for it and the opportunities it presents to cultivate a computational culture within our institution and beyond

    Solution Formulation Development of a VEGF Inhibitor for Intravitreal Injection

    No full text
    PF-00337210 is a potent, selective small molecule inhibitor of VEGFRs and has been under consideration for the treatment of age-related macular degeneration. An ophthalmic solution formulation intended for intravitreal injection was developed. This formulation was designed to maximize drug properties such that the formulation would precipitate upon injection into the vitreous for sustained delivery. As a parenteral formulation with additional constraints dictated by this specialized delivery route, multiple features were balanced in order to develop a successful formulation. Some of these considerations included low dosing volumes (≤0.1 mL), a limited repertoire of safe excipients for intravitreal injection, and the unique physical chemical properties of the drug. The aqueous solubility as a function of pH was characterized, buffer stressing studies to select the minimal amount of buffer were conducted, and both chemical and physical stability studies were executed. The selected formulation consisted of an isotonic solution comprised of PF-00337210 free base in a citrate-buffered vehicle containing NaCl for tonicity. The highest strength for regulatory toxicology studies was 60 mg/mL. The selected formulation exhibited sufficient chemical stability upon storage with no precipitation, and acceptable potency and recovery through an intravitreal dosing syringe. Formulation performance was simulated by precipitation experiments using extracted vitreous humor. In simulated injection experiments, PF-00337210 solutions reproducibly precipitated upon introduction to the vitreous so that a depot was formed. To our knowledge, this is the first time that a nonpolymeric in situ-forming depot formulation has been developed for intravitreal delivery, with the active ingredient as the precipitating agent
    corecore