72 research outputs found

    A statistical mechanics description of environmental variability in metabolic networks

    Get PDF
    Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system

    Urban traffic from the perspective of dual graph

    Full text link
    In this paper, urban traffic is modeled using dual graph representation of urban transportation network where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of vehicles on the network and the motion of vehicles along roads. The road's capacity and the vehicle-turning ability at intersections are naturally incorporated in the model. The overall capacity of the system can be quantified by a phase transition from free flow to congestion. Simulation results show that the system's capacity depends greatly on the topology of transportation networks. In general, a well-planned grid can hold more vehicles and its overall capacity is much larger than that of a growing scale-free network.Comment: 7 pages, 10 figure

    Spatial correlations in attribute communities

    Get PDF
    Community detection is an important tool for exploring and classifying the properties of large complex networks and should be of great help for spatial networks. Indeed, in addition to their location, nodes in spatial networks can have attributes such as the language for individuals, or any other socio-economical feature that we would like to identify in communities. We discuss in this paper a crucial aspect which was not considered in previous studies which is the possible existence of correlations between space and attributes. Introducing a simple toy model in which both space and node attributes are considered, we discuss the effect of space-attribute correlations on the results of various community detection methods proposed for spatial networks in this paper and in previous studies. When space is irrelevant, our model is equivalent to the stochastic block model which has been shown to display a detectability-non detectability transition. In the regime where space dominates the link formation process, most methods can fail to recover the communities, an effect which is particularly marked when space-attributes correlations are strong. In this latter case, community detection methods which remove the spatial component of the network can miss a large part of the community structure and can lead to incorrect results.Comment: 10 pages and 7 figure

    Statistical mechanics of topological phase transitions in networks

    Full text link
    We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies -- based on an exact enumeration method, Monte-Carlo simulations, and theoretical considerations -- we find a rich variety of topological phase transitions when the temperature is varied. These transitions signal singular changes in the essential features of the global structure of the network. Depending on the energy function chosen, the observed transitions can be best monitored using the order parameters Phi_s=s_{max}/M, i.e., the size of the largest connected component divided by the number of edges, or Phi_k=k_{max}/M, the largest degree in the network divided by the number of edges. If, for example the energy is chosen to be E=-s_{max}, the observed transition is analogous to the percolation phase transition of random graphs. For this choice of the energy, the phase-diagram in the [,T] plane is constructed. Single vertex energies of the form E=sum_i f(k_i), where k_i is the degree of vertex i, are also studied. Depending on the form of f(k_i), first order and continuous phase transitions can be observed. In case of f(k_i)=-(k_i+c)ln(k_i), the transition is continuous, and at the critical temperature scale-free graphs can be recovered.Comment: 12 pages, 12 figures, minor changes, added a new refernce, to appear in PR

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011

    Mesoscopic structure conditions the emergence of cooperation on social networks

    Get PDF
    We study the evolutionary Prisoner's Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.Comment: Largely improved version, includes an artificial network model that fully confirms the explanation of the results in terms of inter- and intra-community structur

    Traffic optimization in transport networks based on local routing

    Full text link
    Congestion in transport networks is a topic of theoretical interest and practical importance. In this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata model to simulate the motion of vehicles along streets, coupled with a congestion-aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing the model in real urban street patterns of various cities, we show that it is possible to achieve a global traffic optimization based on local agent decisions.Comment: 4 pages, 5 figure

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Leaders in Social Networks, the Delicious Case

    Get PDF
    Finding pertinent information is not limited to search engines. Online communities can amplify the influence of a small number of power users for the benefit of all other users. Users' information foraging in depth and breadth can be greatly enhanced by choosing suitable leaders. For instance in delicious.com, users subscribe to leaders' collection which lead to a deeper and wider reach not achievable with search engines. To consolidate such collective search, it is essential to utilize the leadership topology and identify influential users. Google's PageRank, as a successful search algorithm in the World Wide Web, turns out to be less effective in networks of people. We thus devise an adaptive and parameter-free algorithm, the LeaderRank, to quantify user influence. We show that LeaderRank outperforms PageRank in terms of ranking effectiveness, as well as robustness against manipulations and noisy data. These results suggest that leaders who are aware of their clout may reinforce the development of social networks, and thus the power of collective search

    Complex cooperative networks from evolutionary preferential attachment

    Get PDF
    In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed in turn by the node interactions. As a specific example, we focus on the problem of the emergence of cooperation by analyzing the formation of a social network with interactions given by the Prisoner's Dilemma. The resulting networks show many features of real systems, such as scale-free degree distributions, cooperative behavior and hierarchical clustering. Interestingly, results such as the cooperators being located mostly on nodes of intermediate degree are very different from the observations of cooperative behavior on static networks. The evolutionary preferential attachment mechanism points to an evolutionary origin of scale-free networks and may help understand similar feedback problems in the dynamics of complex networks by appropriately choosing the game describing the interaction of nodes.Comment: 6 pages and 4 figures, APS format. Submitted for publicatio
    • …
    corecore