2,658 research outputs found

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    Get PDF
    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc

    Polybenzoxazole-filled nitrile butadiene rubber compositions

    Get PDF
    An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed

    EPDM rocket motor insulation

    Get PDF
    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics

    Structure and evolution of the first CoRoT exoplanets: Probing the Brown Dwarf/Planet overlapping mass regime

    Full text link
    We present detailed structure and evolution calculations for the first transiting extrasolar planets discovered by the space-based CoRoT mission. Comparisons between theoretical and observed radii provide information on the internal composition of the CoRoT objects. We distinguish three different categories of planets emerging from these discoveries and from previous ground-based surveys: (i) planets explained by standard planetary models including irradiation, (ii) abnormally bloated planets and (iii) massive objects belonging to the overlapping mass regime between planets and brown dwarfs. For the second category, we show that tidal heating can explain the relevant CoRoT objects, providing non-zero eccentricities. We stress that the usual assumption of a quick circularization of the orbit by tides, as usually done in transit light curve analysis, is not justified a priori, as suggested recently by Levrard et al. (2009), and that eccentricity analysis should be carefully redone for some observations. Finally, special attention is devoted to CoRoT-3b and to the identification of its very nature: giant planet or brown dwarf ? The radius determination of this object confirms the theoretical mass-radius predictions for gaseous bodies in the substellar regime but, given the present observational uncertainties, does not allow an unambiguous identification of its very nature. This opens the avenue, however, to an observational identification of these two distinct astrophysical populations, brown dwarfs and giant planets, in their overlapping mass range, as done for the case of the 8 Jupiter-mass object Hat-P-2b. (abridged)Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    On the Age of Stars Harboring Transiting Planets

    Get PDF
    Results of photometric surveys have brought to light the existence of a population of giant planets orbiting their host stars even closer than the hot Jupiters (HJ), with orbital periods below 3 days. The reason why radial velocity surveys were not able to detect these very-hot Jupiters (VHJ) is under discussion. A possible explanation is that these close-in planets are short-lived, being evaporated on short time-scales due to UV flux of their host stars. In this case, stars hosting transiting VHJ planets would be systematically younger than those in the radial velocity sample. We have used the UVES spectrograph (VLT-UT2 telescope) to obtain high resolution spectra of 5 faint stars hosting transiting planets, namely, OGLE-TR-10, 56, 111, 113 and TrES-1. Previously obtained CORALIE spectra of HD189733, and published data on the other transiting planet-hosts were also used. The immediate objective is to estimate ages via Li abundances, using the Ca II activity-age relation, and from the analysis of the stellar rotational velocity. For the stars for which we have spectra, Li abundances were computed as in Israelian et al. (2004) using the stellar parameters derived in Santos et al. (2006). The chromospheric activity index SUSS_{US} was built as the ratio of the flux within the core of the Ca II H & K lines and the flux in two nearby continuum regions. The index SUSS_{US} was calibrated to Mount Wilson index SMWS_{MW} allowing the computation of the Ca II H & K corrected for the photospheric contribution. These values were then used to derive the ages by means of the Henry et al. (1996) activity-age relation. Bearing in mind the limitations of the ages derived by Li abundances, chromospheric activity, and stellar rotational velocities, none of the stars studied in this paper seem to be younger than 0.5 Gyr.Comment: Accepted for publication in A&
    • …
    corecore