426 research outputs found

    Diffusion des TIC et mobilité. Permanence et renouvellement des problématiques de recherche

    Get PDF
    La question des liens entre la diffusion des outils de communication et la mobilitĂ© physique des individus n'est pas nouvelle et s'est posĂ©e avec l'arrivĂ©e du tĂ©lĂ©phone fixe, et, plus rĂ©cemment, avec le dĂ©veloppement d'Internet et du commerce en ligne. La spectaculaire diffusion d'outils de communication individuels et surtout portables, comme le tĂ©lĂ©phone mobile, a rĂ©cemment donnĂ© un nouvel Ă©lan Ă  cette thĂ©matique dans les champs de l'Ă©conomie des transports, de la gĂ©ographie et de la sociologie. Cet article propose une analyse critique des questionnements explorĂ©s par la littĂ©rature, en vue de mettre en avant les problĂ©matiques qui nous semblent devoir ĂȘtre mieux explorĂ©es.TIC, tĂ©lĂ©phone mobile, mobilitĂ©

    La BibliothĂšque HOA, Bilan et Perspectives

    No full text
    International audienceCet article prĂ©sente l’état actuel de la bibliothĂšque HOA en cours de dĂ©veloppement, suite Ă  un premier article paru dans les actes des Jim 2012. NousprĂ©sentons en dĂ©tail l’ensemble des objets. Nous prĂ©cisons l’apport de la dĂ©composition en ondes planes dans le contexte ambisonique ainsi que l’usage de la synthĂšse binaurale pour une ambisonie virtuelle. Enfin nous abordons la prise en main de la bibliothĂšque par les musiciens

    The Epipeptide Biosynthesis Locus epeXEPAB Is Widely Distributed in Firmicutes and Triggers Intrinsic Cell Envelope Stress

    Get PDF
    The epeXEPAB (formerly yydFGHIJ) locus of Bacillus subtilis encodes a minimalistic biosynthetic pathway for a linear antimicrobial epipeptide, EpeX, which is ribosomally produced and post-translationally processed by the action of the radical-SAM epimerase, EpeE, and a membrane-anchored signal 2 peptide peptidase, EpeP. The ABC transporter EpeAB provides intrinsic immunity against self-produced EpeX, without conferring resistance against extrinsically added EpeX. EpeX specifically targets, and severely perturbs the integrity of the cytoplasmic membrane, which leads to the induction of the Lia-dependent envelope stress response. Here, we provide new insights into the distribution, expression, and regulation of the minimalistic epeXEPAB locus of B. subtilis, as well as the biosynthesis and biological efficiency of the produced epipeptide EpeX*. A comprehensive comparative genomics study demonstrates that the epe-locus is restricted to but widely distributed within the phylum Firmicutes. The gene products of epeXEP are necessary and sufficient for the production of the mature antimicrobial peptide EpeX*. In B. subtilis, the epeXEPAB locus is transcribed from three different promoters, one upstream of epeX (PepeX) and two within epeP (PepeA1 and PepeA2). While the latter two are mostly constitutive, PepeX shows a growth phase-dependent induction at the onset of stationary phase. We demonstrate that this regulation is the result of the antagonistic action of two global regulators: The transition state regulator AbrB keeps the epe locus shut off during exponential growth by direct binding. This tight repression is relieved by the master regulator of sporulation, Spo0A, which counteracts the AbrB-dependent repression of epeXEPAB expression during the transition to stationary phase. The net result of these three ­promoters is an expression pattern that ensures EpeAB-dependent autoimmunity prior to EpeX* production. In the absence of EpeAB, the general envelope stress response proteins LiaIH can compensate for the loss of specific autoimmunity by providing sufficient protection against the membrane-perturbating action of EpeX*. Hence, the transcriptional regulation of epe expression and the resulting intrinsic induction of the two corresponding resistance functions, encoded by epeAB and liaIH, are well balanced to provide a need-based immunity against mature EpeX*.Peer Reviewe

    CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis

    Get PDF
    In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis(Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growt

    CARNIVORES PLEISTOCENES EN MÂCONNAIS. EXCuRSION du 16e SYMPOSIUM INTERNATIONAL DE L’OuRS ETDU LION DES CAVERNES (AzĂ©, 2011)

    Get PDF
    International audienceThe excursion day of the 16th ICBLS provided participants with the opportunity to visit three major palaeontological sites of the Mùconnais: the Azé and Blanot Caves, and the Breccia site of Chùteau, especially rich in big Carnivores, mainly ursids and felids

    How to Increase the Safety and Efficacy of Compounds against Neurodegeneration? A Multifunctional Approach

    Get PDF
    Successful drug design requires not only the detailed knowledge of the pharmacokinetic and pharmacodynamic profiles of the drug candidate portfolio but also a thorough documentation of the possible toxic effects on humans and the environment. Thus, experimental and computational strategies able to measure or predict specific profiles of designed compounds related to their potential toxicity are highly desired. Moreover, a strategy to avoid toxic effects thus enhancing the potential efficacy of drug candidates is of great interest. To fulfil this aim, the pharmacochemistry research unit at the EPGL has recently developed and improved methodologies that detect the potential human health and environmental hazards of compounds active against neurodegeneration at an early stage. A three-step strategy is presented herein. In particular, i) an alternative index to model the bioconcentration of chemicals in the environment was determined; ii) the antioxidant activity of chemical species against free radicals was evaluated. Moreover, since antioxidants play a key role in both toxicity prevention and neuroprotection, iii) the potential interaction of such compounds with enzymatic targets involved in the neurodegenerative cascade was investigated in silico

    Oxidative stress precedes skeletal muscle mitochondrial dysfunction during experimental aortic cross-clamping but is not associated with early lung, heart, brain, liver, or kidney mitochondrial impairment

    Get PDF
    ObjectiveLower limb ischemia-reperfusion results in skeletal muscle mitochondrial alterations, production of reactive oxygen species (ROS), and remote organ impairments that are largely involved in patient prognosis. However, whether ischemia without reperfusion increases ROS production and precedes mitochondrial alteration and whether mitochondrial dysfunction occurs early in remote organs is unknown. This study determined muscle mitochondrial function and ROS production after ischemia alone, or followed by two periods of reperfusion, and investigated heart, lung, liver, kidney, and brain mitochondrial functions after lower limb ischemia-reperfusion.MethodsWistar rats were randomized into four groups: sham (aortic exposure but no ischemia, n = 9), I3 (ischemia alone induced by aortic cross-clamping for 3 hours, n = 9), I3R10â€Č and I3R2 (aortic cross-clamping, followed by reperfusion for 10 minutes [n = 8] or 2 hours [n = 9]). Blood lactate, alanine aminotransferase, aspartate aminotransferase, and creatinine were measured. Mitochondrial respiratory chain complexes I, II, III, and IV activities and mitochondrial coupling (acceptor control ratio) were analyzed using a Clark oxygen electrode in skeletal muscle, lung, heart, brain, liver, and kidney. ROS production was determined using dihydroethidium staining in muscle, heart, liver, and kidney. Inflammation was also investigated in remote organs (heart, liver, and kidney) using monocyte-macrophage-2 antibody staining.ResultsLactate level increased after ischemia in all groups. In muscle, ROS increased significantly after ischemia alone (+324% ± 66%; P = .038), normalized after 10 minutes of reperfusion, and increased again at 2 hours of reperfusion (+349.2 ± 67%; P = .024). Interestingly, mitochondrial function was unaffected by ischemia alone or followed by 10 minutes of reperfusion, but maximal mitochondrial oxidative capacity (6.10 ± 0.51 vs 4.24 ± 0.36 Όmol/min/g, −30%; P < .05) and mitochondrial coupling decreased after 2 hours of reperfusion (1.93 ± 0.17 vs 1.33 ± 0.07, −45%; P < .01), in sham and I3R2 rats, respectively. Despite increased serum aspartate aminotransferase (×13; P < .0001), alanine aminotransferase (×6; P = .0019), and creatinine (×3; P = .0004), remote organs did not show mitochondrial alteration, inflammation, or ROS production enhancement after 2 hours of reperfusion.ConclusionsOxidative stress precedes skeletal muscle mitochondrial dysfunction during lower limb ischemia. Such a kinetic explains the efficacy of ischemic preconditioning and supports that therapy should be conducted even during ongoing ischemia, suggesting that ischemic preconditioning might be a successful approach.Clinical RelevanceAortic cross-clamping increases reactive oxygen species (ROS) and impairs skeletal muscle and remote organs, which is involved in patient prognosis. However, the temporal relationship between ROS production and mitochondrial dysfunction during lower limb ischemia reperfusion is unknown. This study demonstrates for the first time that ROS production occurs during ischemia alone, without reperfusion, and precedes skeletal muscle mitochondrial impairments. Although involved in multiorgan failure, lung, heart, brain, liver, and kidney mitochondria are not affected early. These results support a need for muscle protection even during lower limb ischemia and that ischemic preconditioning (conditioning performed during ongoing ischemia) might be a successful approach

    Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes

    Get PDF
    Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four C-alpha-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-alpha-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by C-alpha H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an alpha,beta-dehydro-amino acid intermediate during C-alpha-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation
    • 

    corecore