28 research outputs found

    Optical pumping of charged excitons in unintentionally doped InAs quantum dots

    Full text link
    As an alternative to commonly used electrical methods, we have investigated the optical pumping of charged exciton complexes addressing impurity related transitions with photons of the appropriate energy. Under these conditions, we demonstrate that the pumping fidelity can be very high while still maintaining a switching behavior between the different excitonic species. This mechanism has been investigated for single quantum dots of different size present in the same sample and compared with the direct injection of spectator electrons from nearby donors.Comment: 4 pages and 3 figures submitted to AP

    Nano

    Get PDF
    Transformant el món amb la Nanotecnociènci

    Creativitat al servei del futur. El nou impuls de la NanotecnociĂšncia

    Get PDF
    Creativity at the Service of Future Progress: New Boom in Nanotechnoscience.Currently, a host of research-project applications contain the prefi x nano. However, this could be more-closely related to a new industrial explosion than with the emergence of new conceptual proposals. Society has also been touched by the euphoria that, in some cases, could be called a “craze”- but proposals from the most cautious sectors are far from science fi ction. Among these we fi nd Biomimetics, which takes as a reference point the solutions that living beings have adopted during the evolutionary process. By uniting these technical and academic visions we generate a third more realistic view of these pet hates. Perhaps this is an alternative that provides collective genius creatively and possibly sustainably at the service of future developments

    El majĂșscul impacte d'allĂČ minĂșscul

    Get PDF
    Tininess Makes a Huge Impact: Semiconducting and Metallic Nanoparticles.Defying the conventions of linguistic repetition, the prefi x nano springs up in all languages with unusual force. Nanostructure, nanofi ber, nanocrystals, nanowires, nanotubes, nanodevice ... These are just a few examples, although you won’t fi nd them in the dictionary. These words have retained some meaning of the root from which they are derived, but should inescapably be contemplated, at best, as distant metaphorical refl ections. The words nanoparticle and nanocrystal will be the focus of this article: What are nanoparticles? When is a nanoparticle a nanocrystal? When is the nanoparticle a quantum dot? What applications can we expect if they are semiconducting or metallic

    Optical characterization of individual GaAs quantum dots grown with height control technique

    Full text link
    We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control.Sarti, F.; Muñoz Matutano, G.; Bietti, S.; Vinattieri, A.; Sanguinetti, S.; Gurioli, M. (2013). Optical characterization of individual GaAs quantum dots grown with height control technique. Journal of Applied Physics. 114(2):1243011-1243014. doi:10.1063/1.4821901S124301112430141142Shields, A. J. (2007). Semiconductor quantum light sources. Nature Photonics, 1(4), 215-223. doi:10.1038/nphoton.2007.46Koguchi, N. (1993). New selective molecular-beam epitaxial growth method for direct formation of GaAs quantum dots. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 11(3), 787. doi:10.1116/1.586789Watanabe, K., Koguchi, N., & Gotoh, Y. (2000). Fabrication of GaAs Quantum Dots by Modified Droplet Epitaxy. Japanese Journal of Applied Physics, 39(Part 2, No. 2A), L79-L81. doi:10.1143/jjap.39.l79Sanguinetti, S., & Koguchi, N. (2013). Droplet epitaxy of nanostructures. Molecular Beam Epitaxy, 95-111. doi:10.1016/b978-0-12-387839-7.00004-xKeizer, J. G., Bocquel, J., Koenraad, P. M., Mano, T., Noda, T., & Sakoda, K. (2010). Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Applied Physics Letters, 96(6), 062101. doi:10.1063/1.3303979(s. f.). doi:10.1021/nl048192Lee, J. H., Wang, Z. M., Abuwaar, Z. Y., Strom, N. W., & Salamo, G. J. (2006). Evolution between self-assembled single and double ring-like nanostructures. Nanotechnology, 17(15), 3973-3976. doi:10.1088/0957-4484/17/15/061Somaschini, C., Bietti, S., Koguchi, N., & Sanguinetti, S. (2011). Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology, 22(18), 185602. doi:10.1088/0957-4484/22/18/185602Somaschini, C., Bietti, S., Koguchi, N., & Sanguinetti, S. (2009). Fabrication of Multiple Concentric Nanoring Structures. Nano Letters, 9(10), 3419-3424. doi:10.1021/nl901493fReyes, K., Smereka, P., Nothern, D., Millunchick, J. M., Bietti, S., Somaschini, C., 
 Frigeri, C. (2013). Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory. Physical Review B, 87(16). doi:10.1103/physrevb.87.165406Bietti, S., Somaschini, C., & Sanguinetti, S. (2013). Crystallization kinetics of Ga metallic nano-droplets under As flux. Nanotechnology, 24(20), 205603. doi:10.1088/0957-4484/24/20/205603Jo, M., Mano, T., & Sakoda, K. (2010). Morphological control of GaAs quantum dots grown by droplet epitaxy using a thin AlGaAs capping layer. Journal of Applied Physics, 108(8), 083505. doi:10.1063/1.3493262Ohtake, A. (2008). Surface reconstructions on GaAs(001). Surface Science Reports, 63(7), 295-327. doi:10.1016/j.surfrep.2008.03.001Mano, T., Abbarchi, M., Kuroda, T., Mastrandrea, C. A., Vinattieri, A., Sanguinetti, S., 
 Gurioli, M. (2009). Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology, 20(39), 395601. doi:10.1088/0957-4484/20/39/395601Adorno, S., Bietti, S., & Sanguinetti, S. (2013). Annealing induced anisotropy in GaAs/AlGaAs quantum dots grown by droplet epitaxy. Journal of Crystal Growth, 378, 515-518. doi:10.1016/j.jcrysgro.2012.11.006Horikoshi, Y., Kawashima, M., & Yamaguchi, H. (1988). Migration-Enhanced Epitaxy of GaAs and AlGaAs. Japanese Journal of Applied Physics, 27(Part 1, No. 2), 169-179. doi:10.1143/jjap.27.16

    Divulgando la cultura cientĂ­fica en la ciudad. AsociaciĂłn cultural "Piratas de la Ciencia"

    Get PDF
    El movimiento asociativo y las plataformas ciudadanas han sido y continĂșan siendo uno de los grandes bloques de consolidaciĂłn del activismo social. Laraña y Gusfield (1994) hablan de un cambio de contexto de los movimientos sociales, desde un ĂĄmbito relacionado con el binomio capital-trabajo hacia una movilizaciĂłn por la pluralidad de valores culturales y simbĂłlicos. Este es el caso, por ejemplo, del activismo ecolĂłgico, plataformas de defensores de consumidores, pacifistas, entre otros, que buscan formas alternativas para la participaciĂłn y decisiĂłn en asuntos de interĂ©s. Sin embargo, no es tan fĂĄcil determinar si existe un movimiento social directo originado desde los propios colectivos cientĂ­ficos. El movimiento Open, el 'escĂ©ptico' entre periodistas, cientĂ­ficos y divulgadores o las asociaciones en pro de la I+D, podrĂ­an entenderse como ejemplos de activismo o de movimiento social. El colectivo Piratas de la Ciencia es una asociaciĂłn cultural independiente que viene trabajando en el campo de la comunicaciĂłn de la ciencia en el entorno local e internacional. Las actividades que se proponen en la asociaciĂłn se entienden como acciones de grupo, colectivas, con un interĂ©s social dirigido a promover el contacto entre especialistas, en los distintos escenarios ciudadanos. Particularmente, entendemos al cientĂ­fico como uno mĂĄs de los actores involucrados en la consolidaciĂłn de la cultura en los distintos entornos sociales y ciudadanos. Presentaremos un resumen de las actividades realizadas por nuestra asociaciĂłn en este contexto en los Ășltimos años

    All optical switching of a single photon stream by excitonic depletion

    Get PDF
    Single semiconductor quantum dots have been extensively used to demonstrate the deterministic emission of high purity single photons. The single photon emission performance of these nanostructures has become very well controlled, offering high levels of photon indistinguishability and brightness. Ultimately, quantum technologies will require the development of a set of devices to manipulate and control the state of the photons. Here we measure and simulate a novel all-optical route to switch the single photon stream emitted from the excitonic transition in a single semiconductor quantum dot. A dual non-resonant excitation pumping scheme is used to engineer a switching device operated with GHz speeds, high differential contrasts, ultra-low power consumption and high single photon purity. Our device scheme can be replicated in many different zero dimensional semiconductors, providing a novel route towards developing a platform-independent on-chip design for high speed and low power consumption quantum devices. Using semiconductor quantum dots as single-photon sources for application to quantum technologies is promising due to the high brightness and photon purity of the emitted light. Here, a method of optically switching their emission based on excitonic depletion is presented

    Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlattices

    Get PDF
    Self-assembled nanocrystals (NCs) into superlattices (SLs) are alternative materials to polycrystalline films and single crystals, which can behave very differently from their constituents, especially when they interact coherently with each other. This work concentrates on the Superradiance (SR) emission observed in SLs formed by CsPbBr3 and CsPbBrI2 NCs. Micro-Photoluminescence spectra and transients in the temperature range 4–100 K are measured in SLs to extract information about the SR states and uncoupled domains of NCs. For CsPbBr3 SLs with mostly homogeneous SR lines (linewidth 1–5 meV), this work measures lifetimes as short as 160 ps, 10 times lower than the value measured in a thin film made with the same NCs, which is due to domains of near identical NCs formed by 1000 to 40 000 NCs coupled by dipole–dipole interaction. The thermal decoherence of the SR exciton state is evident above 25 K due to its coupling with an effective phonon energy of ≈8 meV. These findings are an important step toward understanding the SR emission enhancement factor and the thermal dephasing process in perovskite SLs.Financial support from the Spanish Ministry of Science (MICINN) through project no. PID2020- 120484RB-I00 is gratefully acknowledged. G.M.M. also thanks the support from the Spanish MICINN & AEI (project RTI2018-099015-J-I00). I.M.S. thanks the funding of MCIN/AEI/10.13039/501100011033 with the project STABLE PID2019-107314RB-I00. S.G. acknowledges her “Grisolia” grant from Generalitat Valenciana, and G.M.M. thanks the Ramon y Cajal programme (contract RYC2020-030099-I). Thanks are also due to Dr. RaĂșl IvĂĄn SĂĄnchez AlarcĂłn for his help with X-ray diffraction characterization of NC films and SLs

    All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    Full text link
    [EN] New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 mu eV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.G Munoz-Matutano thanks the Spanish Juan de la Cierva program (JCI-2011-10686). We acknowledge the support of the Spanish MINECO through projects TEC2014-53727-C2-1-R & TEC2014-60378-C2-1-R, the Research Excellency Award Program GVA PROMETEO 2013/012 PROMETEOII/2014/059 and the Explora Ciencia Tecnologia TEC2013-50552-EXP MULTIFUN project, and the Nanoscale Quantum Optics MPNS COST Action MP1403.Muñoz Matutano, G.; Barrera Vilar, D.; Fernandez-Pousa, CR.; Chulia-Jordan, R.; Seravalli. L.; Trevisi, G.; Frigeri, P.... (2016). All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot. Scientific Reports. 6(2721):1-9. https://doi.org/10.1038/srep27214S1962721Walmsley, I. A. Quantum optics: Science and technology in a new light. Science 348, 525–530 (2015).Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).Lu, C.-L. & Pan, J.-W. Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014).Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).MĂŒller, M., Bounouar, S., Jöns, K. D., GlĂ€ssl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 234–238 (2014).Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300nm. Appl. Phys. Lett. 88, 131102 (2006).Liu, X. et al. Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Appl. Phys. Lett. 103, 061114 (2013).Benyoucef, M., Yacob, M., Reithmaier, J. P., Kettler, J. & Michler, P. Telecom-wavelength (1.5 Όm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013).Ward, M. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).Rakher, M. T. et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010).Muñoz-Matutano, G. et al. Time resolved emission at 1.3 Όm of a single InAs quantum dot by using a tunable fibre Bragg grating. Nanotechnology 25, 035204 (2014).Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007).Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011).Gomis-Bresco, J. et al. Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping. New J. Phys. 13, 023022 (2011).Ediger, M. et al. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry. Phys. Rev. Lett. 98, 036808 (2007).Warming, T. et al. Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum dots. Phys. Rev. B 79, 125316 (2009).Benny, Y. et al. Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states. Phys. Rev. B 86, 085306 (2012).Muñoz-Matutano, G. et al. Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots. Nanotechnology 19, 145711 (2008).Ha, N. et al. Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Phys. Rev. B 92, 075306 (2015).Moskalenko, E. S. et al. Influence of excitation energy on charged exciton formation in self-assembled InAs single quantum dots. Phys. Rev. B 64, 085302 (2001).Rivas, D. et al. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light. Nano Lett. 14, 456–463 (2014).Dekel, E. et al. Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy. Phys. Rev. B 62, 11038 (2000).Wimmer, M., Nair, S. & Shumway, J. Biexciton recombination rates in self-assembled quantum dots. Phys. Rev. B 73, 165305 (2006).Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008).Muñoz-Matutano, G. et al. Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping. Physica E 40, 2100–2103 (2008).Birkedal, D., Leosson, K. & Hvam, J. M. Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001).Tartakovskii, A. et al. Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Phys. Rev. B 70, 193303 (2004).Goldmann, E., Barthel, S., Florian, M., Schuh, K. & Jahnke, F. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence. Appl. Phys. Lett. 103, 242102 (2004).Seravalli, L., Trevisi, G. & Frigeri, P. 2D–3D growth transition in metamorphic InAs/InGaAs quantum dots. Cryst. Eng. Comm. 14, 1155–1160 (2012).Akimov, I., Kavokin, K., Hundt, A. & Henneberger, F. Electron-hole exchange interaction in a negatively charged quantum dot. Phys. Rev. B 71, 075326 (2005).Brouri, R., Beveratos, A., Poizat, J. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press (1995).Seravalli, L., Frigeri, P., Trevisi, G. & Franchi, S. 1.59 Όm room temperature emission from metamorphic InAs∕InGaAsInAs∕InGaAs quantum dots grown on GaAs substrates. Appl. Phys. Lett. 92, 213104 (2008).Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015).Venghaus, L. Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences Vol 123 (2006).Seravalli, L. et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett. 98, 173112 (2011).Seravalli, L. et al. Quantum dot strain engineering of InAs∕InGaAsInAs∕InGaAs nanostructures. J. Appl. Phys. 101, 024313 (2007).Seravalli, L., Trevisi, G. & Frigeri, P. Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. Crys. Eng. Comm. 14, 6833–6838 (2012).Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G. & Bocchi, C. Metamorphic quantum dots: quite different nanostructures. J. Appl. Phys. 108, 064324 (2010)
    corecore