32 research outputs found

    Phylogenetic relationships and ecological speciation in the mistletoe Tristerix (Loranthaceae): the influence of pollinators, dispersers, and hosts

    Get PDF
    Phylogenies can provide valuable information on biotic and abiotic factors associated with speciation. We examined species relationships in Tristerix (Loranthaceae), a genus of 11 species with an Andean distribution from Colombia to Chile. A previous classification divided Tristerix into subgenera Tristerix (two species) and Metastachys (nine species). We tested this classification by generating a molecular phylogeny of the genus using nuclear ribosomal DNA ITS and chloroplast atpB-rbcL intergenic spacer and trnL-F regions. All partitions generally gave congruent trees, thus a combined analysis was conducted. Tristerix was composed of a northern clade (six species) and a southern clade (four species). Tristerix verticillatus and T. penduliflorus (Metastachys) were strongly supported as members of the (southern) subgenus Tristerix clade. Speciation appears to be correlated with the emergence of matorral and cloud forest biomes and is driven by interactions with pollinators and seed dispersers. Tristerix aphyllus is sister to T. corymbosus of the matorral, not to neighboring temperate forest populations, thus rendering the latter species paraphyletic. This ecological speciation event may have occurred in sympatry. Tristerix provides excellent examples of how, during the orography of the Andes, many dynamic and interacting ecological factors have influenced their speciation

    The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests

    Get PDF
    The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: Franco, Lida M.. Universidad de Ibagué; ColombiaFil: Bozinovic, Francisco. Pontificia Universidad Católica de Chile; ChileFil: Quintero Galvis, Julian F.. Universidad Austral de Chile; ChileFil: Mejías, Carlos. Universidad Austral de Chile; ChileFil: Amico, Guillermo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Vazquez, Miriam Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sabat, Pablo. Universidad de Chile; ChileFil: Sánchez Hernández, Juan C.. Universidad de Castilla-La Mancha; EspañaFil: Watson, David M.. Charles Sturt University; AustraliaFil: Saenz Agudelo, Pablo. Universidad Austral de Chile; ChileFil: Nespolo, Roberto F.. Universidad Austral de Chile; Chil

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Adquisición de carbono en frutos de color verde del muérdago Tristerix corymbosus (Loranthaceae) Carbon acquisition in green fruits of Tristerix corymbosus (Loranthaceae)

    No full text
    El color verde de los frutos maduros podría atribuirse a la capacidad de adquirir carbono mediante fotosíntesis, lo cual disminuye los costos reproductivos e incrementa la recompensa nutritiva para los dispersores de semillas. En el muérdago Tristerix corymbosus (Loranthaceae) el color de los frutos maduros varía según el bioma: en el matorral chileno los frutos son amarillos mientras que en el bosque templando son verdes. Nuestro objetivo fue determinar si el color de los frutos se relacionaba con la capacidad de ganar carbono vía fotosíntesis y si esta capacidad variaba con la madurez y el bioma. Realizamos mediciones fisiológicas en plantas provenientes de poblaciones de cada bioma. Los frutos, tanto inmaduros como maduros de cada bioma no mostraron adquisición neta de carbono; las hojas mostraron actividad fotosintética, éstas poseen estomas en ambas caras y los frutos carecen de ellos. Estos resultados permiten descartar la hipótesis de que el color verde de los frutos de T. corymbosus se encuentra asociado a la adquisición neta de carbono vía fotosíntesis y mantiene la necesidad de indagación de otras hipótesis sobre la variación del color de los frutos entre biomas.In some species fruits are green when they are ripe. This can be attributed to the ability to acquire carbon via photosynthesis, which reduces reproductive costs and increases nutritional reward for seed dispersers. The color of mature fruits of the mistletoe Tristerix corymbosus (Loranthaceae) differ between biomes. In the Chilean matorral ripe fruits are yellow while in the temperate forest are green. Our objective was to determine whether or not fruits photosynthesize and if this ability varied with maturity stage and biome. We performed physiological measurements in plants from populations of each contrasting biome. Fruits did not denote carbon acquisition, regardless the biome or maturity stage. Leaves showed photosynthetic activity, they are amphistomatic, but fruits lacked stomata. These results prove false the hypothesis that the green color at maturity is associated to the ability to acquire carbon via photosynthesis, allowing to persevere in inquiring alternative hypotheses to explain fruit color variation in T. corymbosus

    Host spatial structure and disperser activity determine mistletoe infection patterns

    No full text
    What processes and factors are responsible for species distribution are long-standing questions in ecology and a key element for conservation and management. Mistletoes provide the opportunity to study a forest species whose occurrence is expected to be constrained by multiple factors as a consequence of their life form. We studied the mistletoe Tristerix corymbosus (Loranthaceae) on its most common hosts species in northwest Patagonia. The seeds of this mistletoe are almost exclusively dispersed by the small arboreal and endemic marsupial Dromiciops gliroides (Microbiotheridae). We assessed the underlying causes of plant spatial patterns through point pattern analysis and we used different variables that characterize the neighborhood around each host to analyze the relative effect of host availability, potential for disperser movement and canopy light conditions. We found that potential hosts were strongly aggregated and that the three most common host species were distributed independent of each other. Considering all host species together, infected and non-infected host were individually aggregated but segregated from each other. The aggregated pattern of infected hosts could be explained in part by the template of potential hosts distribution, but was subsequently modulated by the activity of the mistletoe disperser. Potential for disperser movement, the proximity to reproductive mistletoes and habitat complexity, increased mistletoe infection probability. However, neighboring host availability decreased mistletoe infection probability, and tree DBH (used as surrogate for light conditions) had no detectable effect. Our results suggested that the distribution of mistletoe infection was determined by the structure of potential host populations and by the marsupial disperser activity. Compared to bird dispersed mistletoes, the scale of the infection was smaller and the proximity to reproductive mistletoes and habitat complexity were important for seed arrival and infection. The interplay between landscape structure and disperser activity determine the spatial structure of mistletoe future generations

    Replacement of native by non-native animal communities assisted by human introduction and management on Isla Victoria, Nahuel Huapi National Park

    Get PDF
    One of the possible consequences of biological invasions is the decrease of native species abundances or their replacement by non-native species. In Andean Patagonia, southern Argentina and Chile, many non-native animals have been introduced and are currently spreading. On Isla Victoria, Nahuel Huapi National Park, many non-native vertebrates were introduced ca. 1937. Records indicate that several native vertebrates were present before these species were introduced. We hypothesize that seven decades after the introduction of non-native species and without appropriate management to maintain native diversity, non-native vertebrates have displaced native species (given the known invasiveness and impacts of some of the introduced species). We conducted direct censuses in linear transects 500 m long (n = 10) in parallel with camera-trapping (1,253 camera-days) surveys in two regions of the island with different levels of disturbance: high (n = 4) and low (n = 6) to study the community of terrestrial mammals and birds and the relative abundances of native and non-native species. Results show that currently non-native species are dominant across all environments; 60.4% of census records and 99.7% of camera trapping records are of non-native animals. We detected no native large mammals; the assemblage of large vertebrates consisted of five non-native mammals and one non-native bird. Native species detected were one small mammal and one small bird. Species with the highest trapping rate were red and fallow deer, wild boar, silver pheasant (all four species are non-native) and chucao (a native bird). These results suggest that native species are being displaced by non-natives and are currently in very low numbers
    corecore