412 research outputs found

    Kinetic energy and spin-orbit splitting in nuclei near neutron drip line

    Get PDF
    Two important ingredients of nuclear shell-structure, kinetic energy and spin-orbit splitting, are studied as a function of orbital angular momenta \ell and binding energies, when binding energies of neutrons decrease towards zero. If we use the standard parameters of the Woods-Saxon potential in \beta stable nuclei and approach the limit of zero binding energy from 10 MeV, the spin-orbit splitting for n=1 orbitals decreases considerably for \ell=1, while for \ell > 2 little decreasing is observed in the limit. In contrast, the kinetic energy decreases considerably for \ell \simleq 3. The smaller the \ell values of orbitals, the larger the decreasing rate of both kinetic energy and spin-orbit splitting. The dependence of the above bservation on the diffuseness of potentials is studied.Comment: 12 pages, 3 figures, submitted to Nucl. Phy

    Low Energy States of 3181Ga50^{81}_{31} Ga_{50} : Elements on the Doubly-Magic Nature of 78^{78}Ni

    Get PDF
    Excited levels were attributed to 3181^{81}_{31}Ga50_{50} for the first time which were fed in the β\beta-decay of its mother nucleus 81^{81}Zn produced in the fission of nat^{nat}U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.Comment: 4 pages, REVTeX 4, 5 figures (eps format

    Collective Properties of Low-lying Octupole Excitations in 82208Pb126^{208}_{82}Pb_{126}, 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}

    Full text link
    The octupole strengths of β\beta-stable nucleus 82208Pb126^{208}_{82}Pb_{126}, a neutron skin nucleus 2060Ca40^{60}_{20}Ca_{40} and a neutron drip line nucleus 828O20^{28}_{8}O_{20} are studied by using the self-consistent Hartree-Fock calculation plus the random phase approximation (RPA) with Skyrme interaction. The collective properties of low-lying excitations are analyzed by using particle-vibration coupling. The results show that the lowest isoscalar states above threshold in 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20} are the superpositions of collective excitations and unperturbed transitions from bound state to nonresonance states. For these three nuclei, both the low-lying isoscalar states and giant isoscalar resonance carry isovector strength. The ratio B(IV)/B(IS) is checked. It is found that, for 82208Pb126^{208}_{82}Pb_{126}, the ratios are equal to (NZA)2(\frac{N-Z}{A})^2 in good accuracy, while for 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}, the ratios are much larger than (NZA)2(\frac{N-Z}{A})^2. This results from the excess neutrons with small binding energies in 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}.Comment: 14 pages, 10 figure

    A method of implementing Hartree-Fock calculations with zero- and finite-range interactions

    Get PDF
    We develop a new method of implementing the Hartree-Fock calculations. A class of Gaussian bases is assumed, which includes the Kamimura-Gauss basis-set as well as the set equivalent to the harmonic-oscillator basis-set. By using the Fourier transformation to calculate the interaction matrix elements, we can treat various interactions in a unified manner, including finite-range ones. The present method is numerically applied to the spherically-symmetric Hartree-Fock calculations for the oxygen isotopes with the Skyrme and the Gogny interactions, by adopting the harmonic-oscillator, the Kamimura-Gauss and a hybrid basis-sets. The characters of the basis-sets are discussed. Adaptable to slowly decreasing density distribution, the Kamimura-Gauss set is suitable to describe unstable nuclei. A hybrid basis-set of the harmonic-oscillator and the Kamimura-Gauss ones is useful to accelerate the convergence, both for stable and unstable nuclei.Comment: LaTex 32 pages with 6 Postscript figure

    Discovery of the Vanadium Isotopes

    Full text link
    Twenty-four vanadium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.Comment: to be published in At. Data. Nucl. Data Table

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Discovery of the Cobalt Isotopes

    Full text link
    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.Comment: to be published in Atomic Data and Nuclear Data Table

    Rapid onset of collectivity in the vicinity of 78Ni

    Full text link
    gamma-rays following the B and B-n decay of the very neutron rich 84Ga produced by photo-fission of 238U have been studied at the newly built ISOL facility of IPN Orsay: ALTO. Two activities were observed and assigned to two B-decaying states: 84gGa, I = (0\^-) and 84mGa, I = (3\^-, 4\^-). Excitation energies of the 2+1 and 4+1 excited states of 84Ge were measured at E(2+1) = 624.3 keV and E(4+1) = 1670.1 keV. Comparison with HFB+GCM calculations allows to establish the collective character of this nucleus indicating a substantial N=50 core polarization. The excitation energy of the 1/2+1 state in 83Ga known to carry a large part of the neutron 3s1/2 strength was measured at 247.8keV. Altogether these data allow to confirm the new single particle state ordering which appears immediately after the double Z=28 and N=50 shell closure and to designate 78Ni as a fragile and easily polarized doubly-magic core.Comment: 4 pages, ReVTe

    Angular momentum projected analysis of Quadrupole Collectivity in \protect(^{30,32,34}Mg\protect) and \protect(^{32,34,36,38}Si\protect) with the Gogny interaction

    Full text link
    A microscopic angular momentum projection after variation is used to describe quadrupole collectivity in (^{30,32,34}Mg) and (^{32,34,36,38}Si). The Hartree-Fock-Bogoliubov states obtained in the quadrupole constrained mean field approach are taken as intrinsic states for the projection. Excitation energies of the first (2^{+}) states and the (B(E2,0^{+}\to 2^{+})) transition probabilities are given. A reasonable agreement with available experimental data is obtained. It is also shown that the mean field picture of those nuclei is strongly modified by the projection.Comment: 10 pages, 2 figures, to be published in Phys. Lett.

    Spectroscopy of 26^{26}F

    Get PDF
    The structure of the weakly-bound     926^{26}_{\;\;9}F17_{17} odd-odd nucleus, produced from 27,28^{27,28}Na nuclei, has been investigated at GANIL by means of the in-beam γ\gamma-ray spectroscopy technique. A single γ\gamma-line is observed at 657(7) keV in 926^{26}_{9}F which has been ascribed to the decay of the excited J=2+2^+ state to the J=1+^+ ground state. The possible presence of intruder negative parity states in 26^{26}F is also discussed.Comment: 3 pages, 1 figure, accepted for publication in Physical Review
    corecore