624 research outputs found

    Modification de surfaces électrochimiques par des nanoparticules d'or pour la détection de molécules impliquées dans le stress oxydant

    Get PDF
    Le stress oxydant est un phĂ©nomĂšne biologique rĂ©sultant d'un dĂ©sĂ©quilibre entre des espĂšces pro- et antioxydantes qui peut ĂȘtre impliquĂ© dans les premiers stades de nombreuses pathologies telles que le cancer ou encore des maladies neurodĂ©gĂ©nĂ©ratives. La dĂ©tection des molĂ©cules impliquĂ©es dans le stress oxydant est donc un enjeu majeur en termes de santĂ© publique. De par sa simplicitĂ©, sa rapiditĂ© et son faible coĂ»t, l'Ă©lectrochimie reprĂ©sente une mĂ©thode de choix pour la dĂ©tection du dioxygĂšne dissous et du peroxyde d'hydrogĂšne, deux prĂ©curseurs d'espĂšces dĂ©lĂ©tĂšres plus rĂ©actives en milieu biologique. Dans ce travail, une Ă©tude du comportement Ă©lectrochimique de O2 et H2O2 en milieu neutre a Ă©tĂ© rĂ©alisĂ©e par voltammĂ©tries cyclique et Ă  l'Ă©tat stationnaire, tout d'abord sur des matĂ©riaux massifs non modifiĂ©s (or et carbone vitreux). Afin de servir de rĂ©fĂ©rence et combler une lacune de la bibliographie, les coefficients de transfert de charge ont Ă©tĂ© dĂ©terminĂ©s pour la rĂ©duction de O2 et pour l'oxydation de H2O2 en utilisant la mĂ©thode de Tafel et celle de Koutecky-Levich, puis comparĂ©s Ă  ceux obtenus en milieux acide et basique. Dans une deuxiĂšme partie, des Ă©lectrodes de carbone vitreux fonctionnalisĂ©es par des nanoparticules d'or ont Ă©tĂ© prĂ©parĂ©es selon deux voies : l'Ă©lectrodĂ©pĂŽt direct Ă  partir d'un prĂ©curseur d'or et le dĂ©pĂŽt par adsorption d'une solution colloĂŻdale d'or synthĂ©tisĂ©e en milieu aqueux. Afin de montrer les propriĂ©tĂ©s Ă©lectrocatalytiques des nanoparticules d'or, les coefficients de transfert de charge ont Ă©tĂ© dĂ©terminĂ©s pour la rĂ©duction de O2 et pour l'oxydation de H2O2 et comparĂ©s Ă  ceux obtenus sur matĂ©riaux massifs. À partir des diffĂ©rents matĂ©riaux utilisĂ©s, des Ă©talonnages sĂ©parĂ©s ont Ă©tĂ© rĂ©alisĂ©s pour les deux molĂ©cules cibles, puis une dĂ©tection simultanĂ©e a Ă©tĂ© envisagĂ©e par voltammĂ©trie cyclique afin de rĂ©aliser une preuve de concept pour un futur capteurOxidative stress is a biological phenomenon resulting from an imbalance between oxidant and antioxidant species which can be involved in the early stages of many pathologies such as cancer or neurodegenerative diseases. The detection of molecules involved in the oxidative stress is a major issue in terms of public health. Due to its simplicity, fast-response time and low cost, electrochemistry is a method of interest for the detection of dissolved oxygen and hydrogen peroxide, two precursors of more deleterious reactive species in a biological medium. In this work a study of the electrochemical behavior of O2 and H2O2 under neutral conditions was performed by cyclic and steady-state voltammetries, first on bulk unmodified materials (glassy carbon and gold). In order to be further used as a reference and fill a lack in the literature, the charge transfer coefficients were determined for O2 reduction and H2O2 oxidation using Tafel and Koutecky-Levich methods and were compared to those obtained in acidic and basic media. In a second part, gold nanoparticles functionalized glassy carbon electrodes were prepared by two ways: direct electrodeposition from a gold precursor and deposition by adsorption of colloidal gold solution synthesized in aqueous medium. To demonstrate the electrocatalytic properties of those gold nanoparticles, the charge transfer coefficients were determined for O2 reduction and H2O2 oxidation and compared with those obtained on bulk materials. From the different materials used, separate calibrations were made for the two target molecules, and then a simultaneous detection was proposed by cyclic voltammetry to achieve the proof of concept for future senso

    Electrodeposited gold nanoparticles on glassy carbon: Correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media

    Get PDF
    Gold nanoparticles (AuNPs) were deposited onto glassy carbon (GC) by constant potential electrolysis (CPE) using various sets of potential and duration from -0.3 to 0.7 V and 10 to 1800 s, respectively. The physico-chemical characteristics of the as-obtained deposits were investigated by cyclic voltammetry (CV) in H2SO4, field emission gun scanning electron microscopy (FEG-SEM), and Pb underpotential deposition (UPD). Their performances towards the oxygen reduction reaction (ORR) in a NaCl-NaHCO3 (0.15 M / 0.028 M, pH 7.4) neutral solution were examined and correlated to AuNPs size and density. The best results were obtained using the deposits which exhibited a high density (555 +/- 49 ”m-2) of relatively small AuNPs (25 +/- 12 nm). The Koutecky-Levich treatment was systematically applied to all the deposits in order to determine the number of electrons n exchanged for the ORR in the potential range from 0.1 to -1 V. The values of the cathodic transfer coefficients Beta n were also extracted and compared to the values reported for unmodified GC and bulk Au. A map of the Beta n values as a function of AuNPs electrodeposition potential and duration was also provided

    Kinetics of dioxygen reduction on gold and glassy carbon electrodes in neutral media

    Get PDF
    The electrochemical reduction of dioxygen (O₂) has been studied on bulk gold (Au) and glassy carbon (GC) electrodes in aqueous neutral solution close to blood ionic composition. The mechanism was found to involve two successive bielectronic steps with hydrogen peroxide (H₂O₂) as the reaction intermediate whatever the electrode material used. On Au, O₂ and H₂O₂ were reduced at close potentials. The determination of the kinetic parameters of O₂ electroreduction was thus achieved after removing the cathodic current corresponding to H₂O₂ reduction. Cyclic voltammograms exhibited one cathodic peak whose both current density (jp) and potential (Ep) evolution as a function of potential scan rate (r) was in accordance with Randles Sevcik and Nicholson-Shain equations, respectively. Rotating disk electrode (RDE) voltammetry was also performed and the data were analyzed using the Koutecky-Levich relationship. The effective number of electrons (n) was found to be roughly independent of the potential and close to n = 2 when removing H₂O₂ reduction current whereas it gradually increased up to n = 4 while considering the total current. The Tafel slopes allowed the cathodic transfer coefficients (Beta n) to be calculated in several neutral aqueous electrolytes. Values varied from 0.25 to 0.49 and were systematically higher on Au than on GC electrode. Similar results were obtained with Tafel slopes deduced from Butler Volmer exploitation of the current-potential curves

    Mercury(II) Trace Detection Using a Glassy Carbon Electrode Functionalized by Chemically Prepared Gold Nanoparticles. Influence of Coating Process on Surface Reactivity and Analytical Performances

    Get PDF
    An electrochemical sensor dedicated to Hg(II) trace detection was elaborated based on a gold nanoparticles (AuNPs) modified glassy carbon (GC) electrode. AuNPs were prepared using the Turkevich method and deposited on GC by drop casting. Different protocols including suspension filtration and evaporation temperature control were tested and their influence both on coating morphology and electrochemical activity assessed. From structural characterization, it can be concluded that neither the filtration step nor the drop evaporating temperature have a significant impact on coating morphology at the mesoscale level. However, regarding to the electrochemical activity of the functionalized electrodes, results showed that when some heterogeneities due to (AuNPs) aggregation were present in the coating, the electrochemical activity was reduced. Contrary to what was observed in our previous studies dealing with electrodeposited AuNPs, cycling an AuNPs-GC electrode in H2SO4 lead in all cases to a decrease in active surface area and in a higher density of surface defects, thus revealing a higher surface reactivity of chemically-synthesized AuNPs. The electrochemical activation procedure was found to influence the analytical performances of the functionalized electrode with respect to Hg(II) assay in the picomolar range, but not in the nanomolar range, as a consequence of a saturated concentration effect. A linear concentration range was obtained between 2 and 12 pM with a normalized sensitivity of 0.296 ÎŒA pM-1 min-1 using square wave anodic stripping voltammetry (SWASV) as the detection mode. A limit of detection (LOD) down to 1 pM was reached

    Status of the GERDA experiment

    Get PDF
    The study of neutrinoless double beta (0nbb) decay is the only one presently known approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of 0nbb decay would prove that lepton number is not conserved, establish that neutrino has a Majorana component and, assuming that light neutrino is the dominating process, provide a method for the determination of its effective mass. GERDA is a new 0nbb decay experiment which is currently taking data at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. It implements a new shielding concept by operating bare diodes made from Ge with enriched 76Ge in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than past experiments, to increase the sensitive mass and to collect an exposure of 100 kg yr. The paper will discuss design, physics reach, and status of data taking of GERDA.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Oxygen reduction reaction features in neutral media on glassy carbon electrode functionalized by chemically prepared gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) were prepared by chemical route using 4 different protocols by varying reducer, stabilizing agent and solvent mixture. The obtained AuNPs were characterized by transmission electronic microscopy (TEM), UV-Visible and zeta potential measurements. From these latter surface charge densities were calculated to evidence the effect of the solvent mixture on AuNPs stability. The AuNPs were then deposited onto glassy carbon (GC) electrodes by drop-casting and the resulting deposits were characterized by cyclic voltammetry (CV) in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The electrochemical kinetic parameters of the 4 different modified electrodes towards oxygen reduction reaction (ORR) in neutral NaCl-NaHCO3 media (0.15 M / 0.028 M, pH 7.4) were evaluated by rotating disk electrode voltammetry and subsequent Koutecky-Levich treatment. Contrary to what we previously obtained with electrodeposited AuNPs [Gotti et al., Electrochim. Acta 2014], the highest cathodic transfer coefficients were not obtained on the smallest particles, highlighting the influence of the stabilizing ligand together with the deposits morphology on the ORR kinetics

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → ÎŒ+Ό−)/B(Bs → ÎŒ+Ό−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    • 

    corecore