Abstract

The study of neutrinoless double beta (0nbb) decay is the only one presently known approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of 0nbb decay would prove that lepton number is not conserved, establish that neutrino has a Majorana component and, assuming that light neutrino is the dominating process, provide a method for the determination of its effective mass. GERDA is a new 0nbb decay experiment which is currently taking data at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. It implements a new shielding concept by operating bare diodes made from Ge with enriched 76Ge in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than past experiments, to increase the sensitive mass and to collect an exposure of 100 kg yr. The paper will discuss design, physics reach, and status of data taking of GERDA.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Similar works