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An electrochemical sensor dedicated to Hg(II) trace detection was elaborated based on a gold 

nanoparticles (AuNPs) modified glassy carbon (GC) electrode. AuNPs were prepared using the 

Turkevich method and deposited on GC by drop casting. Different protocols including suspension 

filtration and evaporation temperature control were tested and their influence both on coating 

morphology and electrochemical activity assessed. From structural characterization, it can be 

concluded that neither the filtration step nor the drop evaporating temperature have a significant 

impact on coating morphology at the mesoscale level. However, regarding to the electrochemical 

activity of the functionalized electrodes, results showed that when some heterogeneities due to 

(AuNPs) aggregation were present in the coating, the electrochemical activity was reduced. Contrary 

to what was observed in our previous studies dealing with electrodeposited AuNPs, cycling an AuNPs-

GC electrode in H2SO4 lead in all cases to a decrease in active surface area and in a higher density of 

surface defects, thus revealing a higher surface reactivity of chemically-synthesized AuNPs. The 

electrochemical activation procedure was found to influence the analytical performances of the 

functionalized electrode with respect to Hg(II) assay in the picomolar range, but not in the nanomolar 

range, as a consequence of a saturated concentration effect. A linear concentration range was obtained 

between 2 and 12 pM with a normalized sensitivity of 0.296 µA pM
-1

 min
-1

 using square wave anodic

stripping voltammetry (SWASV) as the detection mode. A limit of detection (LOD) down to 1 pM was 

reached. 

Keywords: Chemically prepared gold nanoparticles; drop-casting; deposit morphology; 

electrochemical reactivity; mercury(II) trace detection 



1. INTRODUCTION

Since the middle of the 20
th

 century, heavy metals represent a growing environmental [1,2] and

health [3,4] problem. They are considered to be a major ecological issue due to their wide dispersion in 

natural media [5], including fresh and marine waters, air and soils [6]. Heavy metals mainly originate 

from human activities, namely atmospheric emissions from coal-burning plants, smelters, waste 

incinerators, process waste from mining, industrial and urban runoff, and so on [7,8]. Once released 

into the environment, they are a persistent threat for decadal or even longer time scales since they are 

not biodegradable. 

Amongst all heavy metals, mercury (Hg) is of particular interest and global importance. Hg is 

present in natural media as inorganic and organometallic species, the latter one being the toxic and 

bioaccumulating methylmercury (MeHg) form [9,10]. Acute MeHg exposure can cause adverse health 

effects for mammals including humans, such as eyesight problems, trembling, paresthesia or ataxia 

[11,12]. Chronic MeHg exposure, even at lower levels, has been related to developmental 

neurotoxicity of the fetus and is thus far considered to be the most critical endpoint [13]. MeHg 

production relies on the concentration and (bio-)availability of inorganic Hg(II) [14]. Due to the 

bioaccumulation phenomena, this latter may be dangerous even at very low levels [9,15,16]. 

Consequently, the World Health Organization has delivered a guideline value of 1 µg L
-1

 (ca. 5 nM)

for drinking water [17]. In Europe, the implementation of the European Water Framework Directive 

[18] requires all states to monitor hazardous substances in surface, ground and coastal waters 

throughout Europe. Thus, there is an urgent need for in situ, real-time and highly-sensitive Hg(II) 

sensors in order to multiply monitoring points dedicated to early warning pollution alert [19]. 

Hg(II) traces are routinely quantified in analytical laboratories by spectroscopic techniques 

such as cold-vapor atomic absorption spectrometry or cold-vapor atomic fluorescence spectrometry 

[20-22]. This latter offers selectivity and quite good sensitivity, reaching 0.2 pM for total Hg(II) [23]. 

However, these techniques suffer important limitations since they involve expensive material and 

require complex and time-consuming procedures, thus limiting any in situ or on line and operando 

analysis. Moreover, rigorous sampling and storage conditions are necessary to avoid any external Hg 

contamination or speciation changes [24,25]. 

In this context, electrochemistry affords an interesting alternative due to its manifold 

advantages over other detection techniques: electrochemical devices are usually cheap, user-friendly, 

require only few energy and simple procedures. They are also mostly reagentless and well-suited for 

miniaturization and automatic in situ measurements with minimal sample changes, and quite fast 

analyses may be achieved with experimental data obtained in real time or with a few minutes time-lag. 

Finally, limits of detection (LOD) in the pM range can be reached using a combination of a 

preconcentration step like anodic stripping voltammetry (ASV) and pulsed techniques such as 

differential pulse (DPV) or square wave voltammetry (SWV) [26,27]. Another strategy for the 

improvement of the analytical performances concerns electrode surface functionalization. The wide 

range of possibilities reported in the literature has been recently reviewed [27,28]. Amongst all 

modifiers, gold nanoparticles (AuNPs) have received a particular attention with respect to Hg(II) trace 

determination [29-33]. This is mainly due to the fact that Au exhibits a strong affinity for Hg that 



enhances the preconcentration effect and to the specific physicochemical properties of nanoparticles 

(NPs) [34]. These include enhanced diffusion rate of electroactive species based on high effective 

surface area of NPs, catalytic activity, higher signal-to-noise ratio and unique optical properties [35]. 

AuNPs may be prepared either via chemical route [36,37] followed by physicochemical deposition 

onto the electrode surface or by direct electrodeposition [38,39]. In the latter case, AuNPs are often 

electrodeposited using a given electrochemical method without providing any justification nor 

checking the influence of the deposit morphology on Hg(II) detection [30-32]. On the contrary, we 

have recently reported on Hg(II) trace determination on a GC electrode (AuNPs-GC) functionalized by 

AuNPs deposited using cyclic voltammetry [40], and proved the analytical performances to be strongly 

correlated to both the density and size of the NPs, the best responses being obtained on AuNPs-GC 

electrodes exhibiting high density of rather small, spherical-shaped NPs. This was further verified by 

studying different AuNPs electrodeposition modes, namely constant potential electrolysis (CPE) and 

potentiostatic double pulse (PDP) [41]. In this latter work, it was shown that the best results in terms of 

LOD were obtained with AuNPs electrodeposited onto GC by CPE. In order to further optimize the 

analytical performances, we also examined the physicochemical phenomena which occur at the 

electrode/solution interface during SWASV and showed that chloride anions adsorption on Au surface 

was a key parameter [42]. As a consequence, further improvement was brought by adding a chloride 

desorption step in the analytical procedure and the applicability of the AuNPs-GC electrode to Hg(II) 

trace analysis in natural waters was demonstrated [43]. In particular, a Hg(II) value of 19 pM was 

measured using the AuNPs-GC electrode for a submarine groundwater discharge sample, and 

confirmed by CV-AFS. In the case of chemically prepared AuNPs, the use of soundly chosen, 

complicated capping ligand such as polystyrenesulfonate doped poly(hydroxymethyl 3,4-

ethylenedioxythiophene) [44] or 1,2-bis[5,2-thiolmethyl-sulphide-1,3,4-oxadiazol-2-yl]-ethane [33] is 

often required to ensure AuNPs stabilization and adsorption onto the electrode surface. In an 

alternative strategy, Li et al. have taken advantage of the highly porous feature of the specific three-

dimensional fibril-like carbon fiber mat substrate (CFME) [32] to adsorb their chemically-prepared 

AuNPs. Finally, the group of Mandler has operated a pretreatment to indium-tin oxide substrates by 

dipping the electrodes in polyethylenimine prior to colloidal AuNPs deposition [45]. However, none of 

these works provide any information correlating the deposits morphology and the analytical 

performances with respect to Hg(II) trace determination. 

In the present work, we explore a simple procedure to functionalize GC electrodes by colloidal 

AuNPs. These latter were prepared by using the classical method described by Turkevich [46] and 

refined by Frens [47]. The resulting AuNPs were then filtered and deposited onto GC by simple drop-

casting at different temperatures. The corresponding AuNPs-GC electrodes were characterized by CV 

in H2SO4, Pb underpotential deposition (UPD) and field emission gun scanning electron microscopy 

(FEG-SEM), and their response to low Hg(II) concentration examined. In particular, a correlation 

between the activation step of the AuNPs and the sensitivity of the functionalized electrode was 

evidenced. Finally, a comparison with our previous results obtained using electrodeposited AuNPs and 

other reports from the literature was provided. 



2. EXPERIMENTAL

2.1. Chemicals and apparatus 

All the solutions were prepared using ultra-pure water (Milli-Q Millipore, 18.2 MΩ cm). 

HAuCl4·3H2O (pro analysis grade) was purchased from Acros Organics. Trisodium citrate 

(C6H5Na3O7) anhydrous was obtained from Alfa Aesar. 95 % H2SO4 (normapur grade) was supplied 

by VWR Prolabo. 30 % HCl and NaNO3 (suprapur grade) were obtained from Merck. A standard 

stock solution of 4.99 ± 0.01 µM Hg(II) was prepared by dilution of 1001 ± 2 mg L
-1

 Hg(NO3)2 NIST

standard solution (certiPUR grade, Merck) and acidified to pH 2 with concentrated 65 % HNO3 

(suprapur grade, Merck), and then used as it for further dilution. 

All the electrochemical experiments were performed at room temperature in a classical three-

electrode glass cell (Metrohm) by using a µ-Autolab II potentiostat (Metrohm Autolab, Utrecht, 

Netherlands) interfaced to a personal computer and controlled with GPES 4.9 software package 

(Metrohm). A Metrohm Ag/AgCl/KCl 3 M electrode, separated from the electrochemical cell by a 

Teflon PTFE capillary containing a 0.1 M NaNO3 solution and terminated by a ceramic diaphragm (D 

type), and a Metrohm glassy carbon (GC) wire were used as reference and counter electrodes, 

respectively. Working electrodes were GC rotating disk electrodes from Radiometer (3 mm diameter, 

A = 7.07 mm
2
) or AuNPs-modified GC (AuNPs-GC). The electrochemical cell was maintained in a

Faraday cage in order to minimize the electrical interferences. When necessary, working electrodes 

were rotated using a rotating system Model EDI 101 interfaced to a CTV 101 speed control unit from 

Radiometer. When indicated, the solutions were deaerated using a N2 stream for 10 min. A N2 

atmosphere was then maintained over the solution during the corresponding experiments. 

Total Hg analyses were performed by cold-vapor atomic fluorescence spectrometry (CV-AFS) 

following a method from the Environmental Protection Agency (EPA-1631) that was extensively 

described in one of our previous work [43]. 

2.2. AuNPs synthesis and filtration 

Gold nanoparticles were prepared using a previously reported procedure [48], in accordance 

with the classical method described by Turkevich [46] and refined by Frens [47]. Briefly, 22 mg 

(8.5×10
-5

 mol) of sodium citrate was dissolved in 30 mL of Milli-Q water. The solution was heated

under reflux and 20 mL of an aqueous solution of HAuCl4 (9.9 mg, 2.5×10
-5

 mol) was quickly added.

The mixture was kept under reflux for 20 min and then cooled to room temperature to afford a ruby red 

solution. Because nanoparticles are prone to aggregate in suspension even when a stabilizer such 

sodium citrate is present in solution, for some experiments the suspension was filtered using a 0.45-µm 

cutoff polyethersulfone membrane filter (VWR) prior to drop-casting in order to assess the influence 

of the occurrence of aggregation in the suspension on the deposit morphology. 



2.3. Electrode preparation and modification 

All the working electrodes were carefully polished prior to use. They were first polished by 

silicon carbide grinding paper (grit 1200) for 10 s. GC surfaces were further polished successively by a 

9 µm, 3 µm, 1 µm and 0.25 µm diamond suspension (Presi) on a cloth polishing pad during 2 min for 

each size. Between each polishing step, the surfaces were cleaned with Milli-Q water. Finally, the 

electrodes were rinsed in an ultrasonic 96 % ethanol bath (three times for 10 min) and cleaned with 

Milli-Q water. After drying, the quality of the polishing step was verified by checking the surface state 

using a Nikon Eclipse LV150 optical microscope. 

Electrode functionalization was achieved by using the drop-casting technique. Briefly, 50 µL of 

the colloidal AuNPs solution was dropped on the GC surface and evaporated overnight either at room 

temperature or in an oven at 100 °C. All the electrodes were then carefully rinsed using Milli-Q water 

and then activated by cyclic voltammetry between 0.2 and 1.4 V in a deaerated 0.5 M H2SO4 solution. 

2.4. AuNPs characterization 

AuNPs were characterized by transmission electronic microscopy (TEM) at the Centre de 

Microscopie Electronique Appliquée à la Biologie (CMEAB, Toulouse) using a HT 7700 Hitachi 

equipment with an accelerating voltage of 80 kV. Average diameter measurements were carried out by 

micrograph analysis with Origin 8, using between 1500 and 3000 nanoparticles for each sample. 

Zeta potentials were obtained from electrophoretic measurements on a Malvern Zetasizer 

Nanoseries ZS90 controlled by integrated software. Calculations were performed using the 

Smoluchowski model [49,50]. 

The AuNPs-GC surface was characterized by field emission gun scanning electron microscopy 

(FEG-SEM) at the CMEAB using a Quanta 250 FEG FEI equipment with an accelerating voltage of 5 

kV and a working distance between 3 and 8 mm depending on the sample. Image analysis was carried 

out using a LGC homemade program for particles counting (density estimation) and average diameter 

measurement developed using MatLab image processing toolbox software. 

Pb underpotential deposition (UPD) experiments were conducted in a 0.01 M HClO4 solution 

containing 1 mM Pb(NO3)2. A potential step of -0.4 V was applied for 10 s before stripping from -0.35 

V to 0.3 V at 50 mV s
-1

.

2.5. Stripping voltammetric detection of Hg(II) 

The analytical procedure dedicated to Hg(II) trace determination was the same as that reported 

in previous works from our group [40,41], in order direct comparison to be made. Electrochemical 

detection and assay of Hg(II) on AuNPs-GC electrodes were performed in a deaerated (N2) 0.01 M 

HCl solution by using square wave anodic stripping voltammetry (SWASV) in the following 

conditions: cleaning potential = 0.80 V, cleaning time = 15 s; preconcentration cathodic potential = 

0.00 V, preconcentration time = 300 s; pulse amplitude = 25 mV, step amplitude = 5 mV, frequency = 

200 Hz; anodic scan from 0.00 to 0.80 V. During the preconcentration step, the solution was stirred by 



means of the rotating working electrode (2000 rpm). A second scan was recorded immediately after 

the first one using the same conditions except the preconcentration time which was set to 30 s, and 

considered as a blank. Hg oxidation peak heights were measured from the curves obtained after 

subtraction of the blank. This procedure, called “subtractive ASV method”, has been previously 

reported in the literature [51]. It allows the analytical results to be released from background vagaries. 

It is noteworthy that the subtractive anodic signals recorded with low Hg(II) concentrations were noisy 

so that the use of a Savitzky-Golay smoothing function was required. 

3. RESULTS AND DISCUSSION

3.1. AuNPs synthesis and characterization 

Table 1. Physicochemical characterization of AuNPs prepared using the Turkevich method before and 

after filtration of the colloidal solution by using a 0.45-µm cutoff polyethersulfone membrane 

filter. 

AuNPs filtration Diam TEM (nm) Zeta potential (mV) 

No 17 -46.1 

Yes 19 -43.3 

Figure 1. TEM micrographs and corresponding size distribution of AuNPs prepared using the 

Turkevich method and (A) unfiltered, (B) filtered after synthesis. 

Figure 1 depicts the TEM micrographs of AuNPs before and after filtration and their 

corresponding size distribution (Table 1). Micrographs showed a gaussian size distribution of spherical 

NPs with a 18 nm average diameter in both case. One can notice a very small proportion of ovale 

objects which could correspond to the aggregation of small nuclei. Zeta potential calculations gave a 



value of -46.1 mV and -43.3 mV respectively. Together with the size distribution, these results comfort 

the idea that the synthesis ensure a dispersion containing a large proportion of spherical NPs stable in 

solution. Moreover, the filtration step proved not to affect the NPs. 

3.2. AuNPs-GC electrodes characterization 

Table 2. Characterization of the AuNPs deposited onto the GC electrode surface by drop-casting. 

AuNPs(X)-GC 

X = 

Filtration 

step 

Drying temperature 

(°C) 

Average diameter 

(nm) 

Average density 

(particles µm
-2

)

Qoxides 

(µC)
 b

A No RT 11 (14) 
a

246 (251) 48.7 

B Yes RT 15 (20) 195 (241) 57.9 

C No 100 18 (22) 166 (193) 12.9 

D Yes 100 - - - 
a
 Numbers in brackets correspond to values obtained including the dense beads. 

b 
Qoxides corresponds to the amount of charge consumed during the reduction of Au oxides (peak around 

0.9 V) produced by CV in 0.5 M H2SO4 (scan rate: 100 mV s
-1

).

Figure 2. (A, B, C) FEG-SEM images of (A, C) unfiltered and (B) filtered AuNPs drop-casted onto 

GC electrode surface. Temperature used for the deposition: (A, B) room temperature; (C) 

100°C. (D) Lead UPD in 0.1 M HClO4 (scan rate: 50 mV s
-1

).



Once characterized, both unfiltered and filtered AuNPs were deposited onto glassy carbon 

(GC) electrode substrates by using the drop-casting technique according to two different protocols: in 

the former one, the colloidal solution drop was left to dry at room temperature overnight; in the second 

one, the drying step was operated overnight in a stove at a given temperature of 100 °C. For the sake of 

clarity, the 4 different resulting deposits will be referred to as AuNPs(X)-GC with X = A, B, C and D 

as stated in Table 2. The AuNPs(X)-GC deposits were characterized by field emission gun scanning 

electron microscopy (FEG-SEM) and cyclic voltammetry (CV) in a deaerated 0.5 M H2SO4 solution. 

Table 2 summarizes the corresponding results. 

AuNPs(A) formed a dense deposit onto GC with big beads of NPs, resulting in a non-

homogeneous distribution of the deposit over the entire surface (Fig. 2A). Calculations were 

undertaken including and excluding these bead structures, producing two sets of values (see Table 2 

for features). The values obtained for NPs diameter and density were systematically higher while 

including the bead structures, but remained in the same order of magnitude when compared to the data 

set for which they are excluded. AuNPs(B)-GC deposits exhibited an almost similar morphology, 

however with a slightly lower NPs density. Less and smaller beads were observed in this case (Fig. 

2B). Contrary to the former two deposits, AuNPs(C)-GC electrode showed significantly lower NPs 

density and no beads (Fig. 2C). Note that the large, bright objects in the middle of the micrograph are 

NaCl crystals from salt remaining in solution after NPs synthesis. These different observations may be 

accounted for considering the high evaporation rate associated with the drying procedure. The deposit 

lacked homogeneity, especially in the vicinity of the NaCl crystals where AuNPs aggregated. Finally, 

it has to be noticed that AuNPs(D) which were filtered after synthesis and deposited at 100 °C did not 

allow any exploitable FEG-SEM image nor voltammogram to be recorded. This experiment was 

repeated several times with a similar result, the reason for such a behavior remaining unclear to us. 

In order to get more information upon AuNPs structuration, Pb underpotential deposition 

(UPD) experiments were performed in 0.1 M HClO4 on AuNPs(X)-GC (X = A, B, C) (Fig. 2D). All 

three stripping voltammograms showed comparable shapes. AuNPs(C)-GC afforded much lower 

currents than AuNPs(A)-GC and AuNPs(B)-GC, in accordance with the corresponding deposit 

morphology observed by FEG-SEM: a less dense deposit of bigger NPs is expected to afford a lower 

active surface area. For all three deposits, a well-defined peak around -0.25 V associated to a shoulder 

was recorded. This split system is typical of (111)-oriented terraces with different size domains, the 

peak being commonly associated to wide Au(111) faces, whereas the shoulder is indicative of 

narrower Au(111) domains. Another broad signal centered around -0.05 V was noticed, which 

corresponds to Au(110) faces. It has to be noticed that, whatever the deposit to be considered, no 

signal characteristic of Au(100) faces was recorded in the potential range from -0.2 to -0.1 V. Thus, 

nor the filtration step neither the drop-casting temperature seemed to have a significant influence on 

the AuNPs crystallographic structure. 

All the deposits were then activated by CV in a deaerated 0.5 M H2SO4 solution. Fig. 3A 

depicts the 10
th

 and 60
th

 consecutive cyclic voltammograms (CVs) recorded for AuNPs(X)-GC (X = A,

B, C). After 10 cycles, AuNPs(A)-GC exhibited the typical shape for such a CV at potentials higher 

than 1.1 V, with several oxidation peaks corresponding to the formation of different kinds of Au 

oxides (solid, blue line). However, another oxidation peak was also noticed at lower potential, ca. 1.05 



V. This latter peak, which was significantly smaller than those at higher potentials, was assigned by 

Angerstein-Kozlowska et al. [52] and the group of Compton [53] to the formation of a sublattice of 

OH species deposited between specifically adsorbed anions. It is noteworthy that this peak (referred to 

as “OA1” following the nomenclature proposed by Angerstein-Kozlowska et al.), the appearance of 

which was random, had never been observed in our previous studies dealing with electrodeposited 

AuNPs [40,41,43,54]. Since Kolb et al. reported a correlation between OA1 peak current and the 

density of surface defects [55,56], this latter observation suggested that chemically prepared AuNPs 

contain more surface defects than electrochemically generated ones. On the backward scan, the 

characteristic reduction peak of Au oxides located at 0.92 V was recorded, together with a small, ill-

defined post-peak around 0.8 V which actually corresponded to the OA1 oxidation peak. This latter 

result is also in accordance with the report by Angerstein-Kozlowska et al. [52]. The integration of the 

reduction peak at 0.92 V Qoxides is reported in Table 2. In the same experimental condition, i.e. 10 

consecutive scans, AuNPs(B)-GC electrode afforded a similar CV, but most of the time without the 

presence of OA1 and its associated reduction peak (solid, red line). It has to be noticed that the shape 

and location of the oxidation peaks at potentials higher than 1.1 V were always different from that 

recorded on AuNPs(A)-GC, suggesting different AuNPs surface reactivity. As discussed before, for 

unfiltered suspensions, some large beads were observed in the resulting deposit. We may infer that the 

presence of these structures modify in some way the surface reactivity. On the backward scan, the 

typical reduction peak of Au oxides was present, although at a potential slightly more cathodic (ca. 40 

mV) than that recorded on AuNPs(A)-GC.  

Figure 3. (A) Evolution of the CVs recorded in 0.5 M H2SO4 between 0.2 and 1.4 V at 100 mV s
-1

 vs.

the number of scans for: (blue) AuNPs(A)-GC; (red) AuNPs(B)-GC; (green) AuNPs(C)-GC. 

Solid line: 10 scans; dashed line: 60 scans. (B) Evolution of the amount of charge consumed 

during Au oxides reduction (deduced from integration of the reduction peak around 0.9 V) vs. 

the number of CV scans. 

This latter peak also exhibited systematically higher magnitude (around 19 %, see Qoxides values 

in Table 2), indicating a larger active surface area for filtered AuNPs. AuNPs(C)-GC electrode 

afforded a very different CV (solid, green line). Indeed, only one small, broad peak was noticed in the 



region 1.15 – 1.4 V for the formation of Au oxides, with a small reduction peak located at 0.9 V on the 

backward scan. The corresponding Qoxides value was only 25 % of that of AuNPs(A)-GC. It is worth 

noting that the global shape of this CV actually compared better to a bulk Au electrode as reported by 

the group of Compton [53] than to AuNPs (electro)deposited onto GC. The fact that peak currents 

were much lower than that of AuNPs(A)-GC and AuNPs(B)-GC was consistent with the FEG-SEM 

data showing a less dense deposit of bigger AuNPs and confirmed the observation provided by the 

UPD experiments. 

In order to get further information on the three deposits, new series of CV scans were recorded 

in the same deaerated 0.5 M H2SO4 solution. 

Fig. 3A, dashed lines, depicts the 60
th

 scan recorded for each deposit (dashed lines). As can be

seen from the comparison between solid and dashed lines for a given deposit, the CV shapes 

experienced a strong evolution while scanning in acidic medium. For AuNPs(A)-GC, only a single, 

large peak was recorded around 1.2 V, and the peak current corresponding to OA1 increased. 

According to Angerstein-Kozlowska et al. [52,57], the increase in OA1 peak current is indicative of a 

reconstruction process which accompanies the electrooxidation of Au. On the backward scan, the 

reduction peak around 0.9 V decreased following an almost linear trend of about 60 % (Fig. 3B). This 

decrease in peak current while cycling is consistent with nanoparticle aggregation and/or Au material 

loss by Au dissolution that both lead to a decrease in active surface area [58]. As a consequence of the 

increase of OA1 peak current, the reduction post-peak around 0.8 V also increased. In the case of 

AuNPs(B)-GC, a similar trend was observed: the oxidation peaks located at potential higher than 1.1 V 

decreased and the global shape of the CV flattened, whereas a small peak at 1.05 V corresponding to 

OA1 appeared. On the backward scan, the reduction peak located around 0.9 V decreased of about 45 

% (Fig. 3B, red data) while a small post-shoulder corresponding to OA1 oxides reduction appeared. 

These results compared well with the report by Steven et al. [58] concerning AuNPs of 2.9 and 3.1 nm 

diameter, which showed a decrease in active surface area while scanning in H2SO4. However, they 

significantly differ from the behavior of 4.5 nm diameter AuNPs described in the same work, the 

electrochemical response of which remained stable over 100 scans in H2SO4. For AuNPs(C)-GC, the 

broad oxidation peak shifted to less anodic values and its shape became closer to that observed for 

AuNPs(A)-GC and AuNPs(B)-GC, whereas the whole peak current remained almost constant. On the 

backward scan, the reduction peak located at 0.9 V decreased of about 30 % (Fig. 3B, green data) and 

split, leading to the appearance of a new, broad reduction peak at 0.76 V. Thus, for all three deposits 

the cycling in H2SO4 proved to have an influence on the surface reactivity. This results contrasts with 

what we previously observed in the case of electrodeposited AuNPs [40,41,43], for which the CVs in 

H2SO4 showed no longer evolution after 10 scans. 

Since HSO4
-
 and SO4

2-
 anions are known to compete for adsorption with the OH species

involved in Au oxidation [57,59], we also investigated the evolution of the CVs obtained on the 

different deposits in H2SO4 vs. time. The result for AuNPs(B)-GC is depicted in Fig. 4. 

In this case the functionalized electrodes were left in the solution between each scan. Clearly, 

the evolution of the CVs shape was more marked compared to that observed when cycling 

continuously. The oxidation peaks located at the highest potentials shifted to lower potential values 

and their corresponding peak currents decreased, while the OA1 peak strongly increased. This is 



indicative of surface rearrangement leading to more surface defects. It is noteworthy that this increase 

was significantly higher than that recorded upon continuous cycling. 

Figure 4. Evolution of the CVs recorded with AuNPs(B)-GC in 0.5 M H2SO4 at 100 mV s
-1

 vs. time.

On the backward scan, the peak around 0.9 V decreased and the second reduction peak around 

0.8 V appeared, the overall peak area remaining nearly constant over the experiment. This latter peak 

slowly shifted to more cathodic value with time, ca. from 0.77 V to 0.70 V between 1.5 and 4.5 hours. 

Thus, the way the activation of AuNPs deposits onto GC by scanning in H2SO4 is performed has a 

strong impact on the NPs surface reactivity since an evolution of the CVs was noticed vs. both the 

number of scans recorded and the duration of the dipping in the solution. Keeping in mind that no 

stabilization of the resulting electrochemical response was obtained even after 100 scans, the activation 

conditions were expected to strongly impact the analytical performances of the chemically prepared 

AuNPs deposits towards Hg(II). 

3.3. Hg(II) trace determination and assay 

The response of AuNPs(X)-GC electrodes (X = A, B, C) towards increasing amounts of Hg(II) 

was examined in 0.01 M HCl solution, using a SWASV procedure the optimized parameters of which 

were described in a previous study [41]. For the sake of comparison with this latter work, the AuNPs 

activation process was performed by running 10 scans in a 0.5 M H2SO4 solution between 0.20 and 

1.40 V at a scan rate 100 mV s
-1

. Fig. 5 depicts the SWASV signals obtained on AuNPs(B)-GC.

The peak observed around 0.67 V corresponded to preconcentrated Hg(0) reoxidation in 

Hg(II). Compared to our previous results on electrodeposited AuNPs [40,41], the signal was much 

broader and located at slightly higher potential (ca. 0.1 V anodic shift). Moreover, the peak potential 

shifted to more anodic values while increasing the Hg(II) amount in the solution, and a pre-peak 



shoulder concomitantly appeared around 0.6 V. Both phenomena were not observed in the case of 

electrodeposited AuNPs [40,41,43]. 

Figure 5. SWASV responses obtained in a 0.01 M HCl solution for increasing Hg(II) concentrations 

(blank subtracted) on a AuNPs(B)- p vs. [Hg(II)] and corresponding 

linear regression. 

The amperometric response followed a linear trend with respect to Hg(II) concentration up to 

3.6 nM, after what it became nearly constant, suggesting a saturation effect of the active surface area 

of the NPs (Fig. 5, inset). From the slope of the calibration plot, the normalized sensitivity of 

AuNPs(B)-GC electrode was found to be 0.49 µA nM
-1

 min
-1

. This is a little more than twice better

than the value obtained in our previous work with electrodeposited AuNPs and using exactly the same 

experimental conditions (ca. 0.23 µA nM
-1

 min
-1

) [41]. Thus, given the AuNPs exhibited similar

diameter using both preparation methods but higher density when electrodeposited, this result 

suggested a much higher reactivity towards Hg(II) in the case of chemically prepared AuNPs. It has to 

be noticed that varying the AuNPs activation parameters (i.e. total number of CVs in H2SO4) did not 

allow any significant change in the amperometric response towards Hg(II) in the nM range to be 

observed (not shown). AuNPs(A)-GC and AuNPs(C)-GC afforded comparable analytical 

performances (not shown), which may be surprising since the active surface area of the three deposits 

were very different (see Qox values in Table 2 and discussion above). This may be accounted for 

considering that in this Hg(II) concentration range, the electrode surfaces were all three close to 

saturation. 

These results together with the latter consideration encouraged us to check the amperometric 

response of the functionalized electrodes in the pM range. The results obtained for AuNPs(A)-GC are 

given in Figure 6. 

In this concentration range, the impact of the activation parameters was much more marked, 

this latter showing a strong influence both on the linear range and on the normalized sensitivity. It was 



not possible to provide error bars in this concentration range due to a slight increase in Hg(0) 

reoxidation peak current while repeating measurements (not shown). This phenomenon suggests that 

all the deposited Hg is not redissolved during the stripping step. 

Figure 6. Calibration plots obtained in the pM range on AuNPs(B)-GC electrode activated by using 

various number of cyclic scans in 0.5 M H2SO4. 

Table 3. Comparison of the analytical performances of electrochemical sensors with respect to Hg(II) 

trace detection. 

Substrate Functionalization Normalized sensitivity 

(µA pM
-1

 min
-1

) 
g

LOD 

(pM) 

Ref. 

ITO 
a

AuNPs (ch.) 
c

- 5 [45] 

CPE 
b

Composite Bi-AuNPs (elect.) 
c

2.58×10
-6

1400 [61] 

Au RGO 
d
 / polyaniline / DNA - 

h
35 [62] 

CPE RGO / Au nanocomposite 1.20×10
-5

1250 [63] 

CPE BTMSOE 
e
 / AuNPs (ch.) / SH-MWCNTs

f
5.53×10

-8
1.7 [33] 

GC Ag / 4,4’-bypyridine polymer 1.42×10
-4

450 [64] 

GC AuNPs (ch.) 0.296 1 This work 
a
 Indium-tin oxide. 

b
 Carbon paste electrode. 

c
(ch.) stands for “chemically prepared AuNPs”; (elect.) stands for “electrochemically generated 

AuNPs”. 
d
 Reduced graphene oxide. 

e
 1,2-bis[5,2-thiolmethyl-sulphide-1,3,4-oxadiazol-2-yl]-ethane. 

f
 (3-mercaptopropyl) trimethoxysilane-multi-walled carbon nanotubes. 

g
 The value of the normalized sensitivity was obtained by dividing the slope of the linear response by 

the preconcentration time. 
h
 As the corresponding sensor was impedimetric, the sensitivity value is meaningless here. 



From the analysis of the different calibration plots on Fig. 6, one may invoke a bell-shape 

influence of the number of activation scan on the amperometric response of AuNPs(A)-GC electrode 

towards very low Hg(II) concentration. Although the reproducibility of the results was not good 

enough in order to ascertain and sustain this hypothesis, it is interesting to notice that it could be 

supported by the observation made on the basis of activation CVs, which showed a decrease in activate 

surface area upon scanning. The best response in terms of sensitivity was recorded on AuNPs activated 

in the same conditions than before, i.e. by recording 10 scans in a 0.5 M H2SO4 solution between 0.20 

and 1.40 V at a scan rate 100 mV s
-1

. In this case a linear response was found in the range 2 – 12 pM

with a normalized sensitivity of 0.296 µA pM
-1

 min
-1

. A limit of detection (LOD) of 1 pM was

calculated for a signal-to-noise ratio of 3 [60]. These analytical performances compared favorably with 

recent reports found in the literature dealing with AuNPs prepared either by electrochemical or 

chemical route (see comparative features in Table 3). 

Indeed, only the works by Ramezani et al. [33] and Ratner et al. [45] allowed a LOD in the few 

pM range to be reached. It is noteworthy that the common point to these latter two works with the 

present one is the use of chemically prepared AuNPs, which confirms once again the great reactivity of 

these nanoobjects. 

4. CONCLUSION

In this work, AuNPs were prepared using the Turkevich method, filtered and deposited onto 

GC by drop-casting either at room temperature or at 100 °C. The results showed that the filtration step, 

prior to drop-casting did not exhibit a strong influence on the resulting NPs deposits morphology. On 

the contrary, evaporation rate has a dramatic effect on AuNPs by favoring aggregation phenomema. 

Activation of the AuNPs by cycling in H2SO4 lead to significant evolution of their reactivity and 

decrease in active surface area consistent with NPs growth and/or Au material loss by Au dissolution. 

With respect to Hg(II) detection, the activation step and more precisely the number of activation scans 

also showed an influence while measuring Hg(II) in the pM range. Finally, chemically-prepared 

AuNPs exhibited a better sensitivity than electrogenerated ones, and allowed a LOD down to 1 pM to 

be reached. However, the results lacked repeatability due to a memory effect, i.e. all the reduced Hg is 

not reoxidized while stripping. Efforts will now focus on this latter point together with the long-term 

stability of the interface. 
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