43 research outputs found

    N‐terminus of hMLH1 confers interaction of hMutLα and hMutLÎČ with hMutSα

    Get PDF
    Mismatch repair is a highly conserved system that ensures replication fidelity by repairing mispairs after DNA synthesis. In humans, the two protein heterodimers hMutSα (hMSH2‐hMSH6) and hMutLα (hMLH1‐hPMS2) constitute the centre of the repair reaction. After recognising a DNA replication error, hMutSα recruits hMutLα, which then is thought to transduce the repair signal to the excision machinery. We have expressed an ATPase mutant of hMutLα as well as its individual subunits hMLH1 and hPMS2 and fragments of hMLH1, followed by examination of their interaction properties with hMutSα using a novel interaction assay. We show that, although the interaction requires ATP, hMutLα does not need to hydrolyse this nucleotide to join hMutSα on DNA, suggesting that ATP hydrolysis by hMutLα happens downstream of complex formation. The analysis of the individual subunits of hMutLα demonstrated that the hMutSα–hMutLα interaction is predominantly conferred by hMLH1. Further experiments revealed that only the N‐terminus of hMLH1 confers this interaction. In contrast, only the C‐terminus stabilised and co‐immunoprecipitated hPMS2 when both proteins were co‐expressed in 293T cells, indicating that dimerisation and stabilisation are mediated by the C‐terminal part of hMLH1. We also examined another human homologue of bacterial MutL, hMutLÎČ (hMLH1–hPMS1). We show that hMutLÎČ interacts as efficiently with hMutSα as hMutLα, and that it predominantly binds to hMutSα via hMLH1 as well

    Die hMutSα-hMutL-Interaktionen bei der Initiation der humanen Mismatch-Reparatur

    Get PDF
    Die Mismatch-Reparatur (MMR) ist ein hochkonserviertes Kontroll- und Korrektursystem fĂŒr die Erbinformation. Ihre Hauptaufgabe liegt in der Behebung von Kopierfehlern unmittelbar nach der Replikation (postreplikative Reparatur). Mutationen in Genen der Mismatch-Reparatur (vor allem in hMLH1 und hMSH2) fĂŒhren beim Menschen zum "Erblichen nicht-polypösen kolorektalen Karzinom", HNPCC (Hereditary non-polyposis colorectal cancer). Diese Erbkrankheit geht mit einem gesteigerten Risiko einher, an verschiedenen Karzinomen, vor allem des Kolons, zu erkranken. Obwohl zumindest in Escherichia coli alle an der Mismatch-Reparatur beteiligten Proteine bekannt sind, ist ihr biochemischer Mechanismus nach wie vor ungeklĂ€rt. Es existieren drei verschiedene Modellvorstellungen zum Reparaturablauf: das Translocation model, das Sliding clamp model und das DNA bending model. Um einer KlĂ€rung des Reparaturmechanismus nĂ€herzukommen, sollten in dieser Arbeit die Bindungen der humanen Mismatch-Reparaturproteine an DNA und ihre Interaktionen untereinander nĂ€her untersucht werden. Im Zentrum stand dabei die Interaktion der heterodimeren ATPase hMutSa (hMSH2-hMSH6) mit den ebenfalls heterodimeren ATPasen hMutLa (hMLH1-hPMS2) und hMutLß (hMLH1-hPMS1). Die Hauptfunktion von hMutSa ist bekannt: das Dimer ist in der Lage, DNA-Paarungsfehler zu erkennen und an sie zu binden. Die Funktion von hMutLa liegt wahrscheinlich in der Weiterleitung des Signals "Fehler erkannt" von hMutSa an die Reparaturmaschinerie. Somit kommt der Interaktion von hMutSa mit hMutLa eine wesentliche Bedeutung in der Initiation der Reparatur zu. Die Funktion von hMutLß ist noch unbekannt. Zur Analyse der hMutSa-hMutL-Interaktion wurde eine neue Methodik entwickelt, bei der DNA-Substrate an magnetische Partikel gebunden, diese mit Proteinlösungen inkubiert und die gebundenen Proteine anschließend mit Salzlösungen eluiert wurden. Hierdurch konnten die BindungsstĂ€rken anhand der Salzresistenz differenziert werden und die Bindungsreaktionen nach ATP-Zugabe bei verschiedenen DNA-Substraten verfolgt werden. Es konnte gezeigt werden, daß hMutSa zwar nicht quantitativ mehr, aber fester an DNA-Paarungsfehler band als an fehlerfreie DNA-Oligoduplices. Die Bindung reagierte empfindlich auf die Zugabe von ATP: auf Homoduplex-DNA bewirkte ATP unter geeigneten Bedingungen einen vollstĂ€ndigen Bindungsverlust von hMutSa, wĂ€hrend es an Heteroduplex-DNA auch in Gegenwart des Nukleotidtriphosphates gebunden blieb. Eine weitere Wirkung von ATP bestand darin, daß hMutSa hMutLa und hMutLß rekrutierte. Dies geschah allerdings nur, wenn ausreichend lange DNA-Substrate (>= 81 Basenpaare) verwendet wurden. FĂŒr hMutLa konnte außerdem eine eigene DNA-BindungsfĂ€higkeit, und zwar vorzugsweise an Einzelstrang-DNA, nachgewiesen werden. Beide Ergebnisse zusammen genommen legen nahe, daß hMutSa und hMutLa nur interagieren können, wenn beide gleichzeitig an DNA gebunden sind. Obwohl nach bisherigen Erkenntnissen hMutLa, aber nicht hMutLß die Mismatch-Reparatur unterstĂŒtzen kann, interagierte hMutLß ebensogut mit hMutSa. Dies lĂ€ĂŸt im Zusammenhang mit weiteren Ergebnissen vermuten, daß hMutLß eine modulierende Funktion in der MMR besitzen könnte. Alternativ könnte die hMutSa-hMutLß-Interaktion bei noch nicht charakterisierten anderen Prozessen von Bedeutung sein. Die weitere Untersuchung der Interaktion ergab, daß diese wahrscheinlich nicht von der ATP-Hydrolyse abhĂ€ngt, sondern allein durch die Bindung des Nukleotidtriphosphates zustande kommt. DarĂŒber hinaus spielen die ATPasen von hMutLa keine Rolle bei der Interaktion, da das Protein auch dann noch die Bindung einging, wenn seine Nukleotidbindungsstellen gezielt mutiert worden waren. Die Untersuchung zeigte außerdem, daß nur die hMutL-Untereinheiten hMLH1 und (in geringem Ausmaß) hPMS1 ATP-abhĂ€ngig mit hMutSa interagierten, wĂ€hrend hPMS2 alleine keine Bindung zeigte. Die sich daran anschließende Untersuchung von Fragmenten des hMLH1-Proteins erlaubte die Eingrenzung der Interaktionszone. hMutLa kontaktiert hMutSa demzufolge mit einem Proteinbereich, der innerhalb des N-Terminus von hMLH1 liegt. Zusammenfassend wird aufgrund der vorliegenden Ergebnisse fĂŒr das DNA bending model der Mismatch-Reparatur plĂ€diert. Dessen Reparaturablauf wird abschließend unter BerĂŒcksichtigung der vorliegenden Daten geschildert. In einem separaten Kapitel der Arbeit wird ĂŒber die Identifizierung und Charakterisierung einer neuen Spleißmutation des humanen PTEN-Gens berichtet. Diese Mutation wurde bei einer Patientin mit dem Cowden-Syndrom, einem weiteren erblichen Krebssyndrom, nachgewiesen

    C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Get PDF
    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency

    Mutations in the MutSα interaction interface of MLH1 can abolish DNA mismatch repair

    Get PDF
    MutLα, a heterodimer of MLH1 and PMS2, plays a central role in human DNA mismatch repair. It interacts ATP-dependently with the mismatch detector MutSα and assembles and controls further repair enzymes. We tested if the interaction of MutLα with DNA-bound MutSα is impaired by cancer-associated mutations in MLH1, and identified one mutation (Ala128Pro) which abolished interaction as well as mismatch repair activity. Further examinations revealed three more residues whose mutation interfered with interaction. Homology modelling of MLH1 showed that all residues clustered in a small accessible surface patch, suggesting that the major interaction interface of MutLα for MutSα is located on the edge of an extensive ÎČ-sheet that backs the MLH1 ATP binding pocket. Bioinformatic analysis confirmed that this patch corresponds to a conserved potential protein–protein interaction interface which is present in both human MLH1 and its E.coli homologue MutL. MutL could be site-specifically crosslinked to MutS from this patch, confirming that the bacterial MutL–MutS complex is established by the corresponding interface in MutL. This is the first study that identifies the conserved major MutLα–MutSα interaction interface in MLH1 and demonstrates that mutations in this interface can affect interaction and mismatch repair, and thereby can also contribute to cancer development

    Evaluation of MLH1 variants of unclear significance

    Get PDF
    Inactivating mutations in the MLH1 gene cause the cancer predisposition Lynch syndrome, but for small coding genetic variants it is mostly unclear if they are inactivating or not. Nine such MLH1 variants have been identified in South American colorectal cancer (CRC) patients (p.Tyr97Asp, p.His112Gln, p.Pro141Ala, p.Arg265Pro, p.Asn338Ser, p.Ile501del, p.Arg575Lys, p.Lys618del, p.Leu676Pro), and evidence of pathogenicity or neutrality was not available for the majority of these variants. We therefore performed biochemical laboratory testing of the variant proteins and compared the results to protein in silico predictions on structure and conservation. Additionally, we collected all available clinical information of the families to come to a conclusion concerning their pathogenic potential and facilitate clinical diagnosis in the affected families. We provide evidence that four of the alterations are causative for Lynch syndrome, four are likely neutral and one shows compromised activity which can currently not be classified with respect to its pathogenic potential. The work demonstrates that biochemical testing, corroborated by congruent evolutionary and structural information, can serve to reliably classify uncertain variants when other data are insufficient.Barretos Cancer Hospital was partially funded by FINEP‐CT‐INFRA, Grant Number: 02/2010, Radium Hospital Foundation (Oslo, Norway), Helse Sþr‐Øst (Norway); Deutsche Forschungsgemeinschaft, Grant Number: PL688/2‐1info:eu-repo/semantics/publishedVersio

    Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A

    Get PDF
    We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen~A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (\G=2.67\pm0.10_{stat}\pm0.08_{sys} where the photon flux is \Phi\propto E^{-\G}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004-2008. The fit requires a low Doppler factor, in contrast to BL Lacs which generally require larger values to fit their broadband SEDs. This indicates the \g-ray emission originates from a slower region than that from BL Lacs, consistent with previous modeling results from Cen~A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow.Comment: Accepted by ApJ. 32 pages, 5 figures, 2 tables. J. Finke and Y. Fukazawa corresponding author

    Investigation of the Wilson gene ATP7B transcriptional start site and the effect of core promoter alterations

    No full text
    Pathogenic genetic variants in the ATP7B gene cause Wilson disease, a recessive disorder of copper metabolism showing a significant variability in clinical phenotype. Promoter mutations have been rarely reported, and controversial data exist on the site of transcription initiation (the core promoter). We quantitatively investigated transcription initiation and found it to be located in immediate proximity of the translational start. The effects human single-nucleotide alterations of conserved bases in the core promoter on transcriptional activity were moderate, explaining why clearly pathogenic mutations within the core promoter have not been reported. Furthermore, the core promoter contains two frequent polymorphisms (rs148013251 and rs2277448) that could contribute to phenotypical variability in Wilson disease patients with incompletely inactivating mutations. However, neither polymorphism significantly modulated ATP7B expression in vitro, nor were copper household parameters in healthy probands affected. In summary, the investigations allowed to determine the biologically relevant site of ATP7B transcription initiation and demonstrated that genetic variations in this site, although being the focus of transcriptional activity, do not contribute significantly to Wilson disease pathogenesis

    Key role of phosphorylation sites in ATPase domain and Linker region of MLH1 for DNA binding and functionality of MutLα

    No full text
    MutLα is essential for human DNA mismatch repair (MMR). It harbors a latent endonuclease, is responsible for recruitment of process associated proteins and is relevant for strand discrimination. Recently, we demonstrated that the MMR function of MutLα is regulated by phosphorylation of MLH1 at serine (S) 477. In the current study, we focused on S87 located in the ATPase domain of MLH1 and on S446, S456 and S477 located in its linker region. We analysed the phosphorylation-dependent impact of these amino acids on DNA binding, MMR ability and thermal stability of MutLα. We were able to demonstrate that phosphorylation at S87 of MLH1 inhibits DNA binding of MutLα. In addition, we detected that its MMR function seems to be regulated predominantly via phosphorylation of serines in the linker domain, which are also partially involved in the regulation of DNA binding. Furthermore, we found that the thermal stability of MutLα decreased in relation to its phosphorylation status implying that complete phosphorylation might lead to instability and degradation of MLH1. In summary, we showed here, for the first time, a phosphorylation-dependent regulation of DNA binding of MutLα and hypothesized that this might significantly impact its functional regulation during MMR in vivo
    corecore