2,054 research outputs found

    Structure-based drug discovery for tropical diseases

    Get PDF
    Parasitic diseases are amongst the foremost threats to human health and welfare around the world. In tropical and subtropical regions of the world, the consequences of parasitic infections are devastating both in terms of human morbidity and mortality. The current available drugs are limited, ineffective, and require long treatment regimens. To overcome these limitations, the identification of new macromolecular targets and small-molecule modulators is of utmost importance. The advances in genomics and proteomics have prompted drug discovery to move toward more rational strategies. The increasing understanding of the fundamental principles of protein-ligand interactions combined with the availability of compound libraries has facilitated the identification of promising hits and the generation of high quality lead compounds for tropical diseases. This review presents the current progresses and applications of structure-based drug design (SBDD) for the discovery of innovative chemotherapy agents for a variety of parasitic diseases, highlighting the challenges, limitations, and future perspectives in medicinal chemistry.FAPESPCNP

    Virtual screening and its integration with modern drug design technologies

    Get PDF
    Drug discovery is a highly complex and costly process, which demands integrated efforts in several relevant aspects involving innovation, knowledge, information, technologies, expertise, R&D investments and management skills. The shift from traditional to genomics- and proteomics-based drug research has fundamentally transformed key R&D strategies in the pharmaceutical industry addressed to the design of new chemical entities as drug candidates against a variety of biological targets. Therefore, drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. The combination of available knowledge of several 3D protein structures with hundreds of thousands of small-molecules have attracted the attention of scientists from all over the world for the application of structure- and ligand-based drug design approaches. In this context, virtual screening technologies have largely enhanced the impact of computational methods applied to chemistry and biology and the goal of applying such methods is to reduce large compound databases and to select a limited number of promising candidates for drug design. This review provides a perspective of the utility of virtual screening in drug design and its integration with other important drug discovery technologies such as high-throughput screening (HTS) and QSAR, highlighting the present challenges, limitations, and future perspectives in medicinal chemistry.FAPESPCNP

    Neglected tropical diseases: a new era of challenges and opportunities

    Get PDF
    In an article recently published in Química Nova, entitled Chemistry Without Borders (Química Sem Fronteiras) [Pinto, A. C.; Zucco, C.; Galembeck, F.; Andrade, J. B.; Vieira, P. C. Quim. Nova 2012, 35, 2092], the authors highlighted the important aspects of science and technology with special emphasis on the field of Chemistry and its contributions toward a more prosperous Brazil of future. As a second step in that direction, this article extends the discussion of a key issue for the country in the framework of the chemistry community through the so called position papers in strategic areas. This document is a part of the contribution of the Brazilian Chemical Society to the World Science Forum to be held in Rio de Janeiro in November 2013. In this context, the present paper provides a brief discussion on neglected tropical diseases (NTDs) with emphasis on the current challenges and opportunities towards the development and evolution of the field. NTDs leads to illness, long-term disability or death, and has severe social, economic and psychological consequences for millions of men, women, and children worldwide. In most cases, the available treatments are inadequate and extremely limited in terms of efficacy and safety, leading to an urgent demand for new drugs. In addition to the traditional challenges involved in any drug discovery process, it is widely recognized that there is an innovation gap and a lack of investment for research and development (R&D) in the area of NTDs. In the last few decades, methods toward combating, eradication, prevention, and treatment of NTDs have been repeatedly emphasized in the major international agendas. Developments in these strategies and alliances have continued to have an essential impact, particularly in the area of drug discovery, both in Brazil and globally and should be encouraged and supported. Several examples of international activities dedicated to the reduction of the devastating global impact of NTDs can be provided. Despite the beneficial developments in the past 30 years, NTDs continue to devastate poor communities in remote and vulnerable areas, in large part, due to market failures and public policies. Recent studies have shown that among 756 new drugs approved between 2000 and 2011, only four new chemical entities (NCEs) were identified for the treatment of malaria, while none were developed against NTDs or tuberculosis. Furthermore, only 1.4% of approximately 150,000 clinical trials were registered for neglected diseases, with a smaller number of trials for NCEs. Establishment and strengthening of global strategies involving the triad government-academia-industry is fundamental to the success in R&D of new drugs for NTDs. National and international public-private initiatives that aim to create, encourage, and invest in R&D projects have been implemented and therefore are of utmost importance to successfully integrate Brazil into this new paradigm. It is essential to lay the foundation for mechanisms that will intensify investments in infrastructure, training, and qualification of personnel with an ultimate strategic vision that foresees continuity. Our research group has made significant contributions to the development of this field with the goal of forging new frontiers while tackling both current and future challenges that include indispensable elements such as innovation and integration.15521556Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    In vitro Antiplasmodial Activities of Alkaloids Isolated from Roots of Worsleya procera (Lem.) Traub (Amaryllidaceae)

    Get PDF
    A combined phytochemical, crystallographic and biological study of Worsleya procera roots was performed. Fifteen alkaloids were identified by gas chromatography mass spectrometry (GC-MS) and seven of them were isolated. The structures of the alkaloids were elucidated by spectroscopic methods, and a detailed crystallographic study of tazettine was carried out. The isolated alkaloids and the obtained extracts were tested in vitro against Plasmodium falciparum (3D7 and K1 strains) and human hepatocarcinoma cells (HepG2) to assess their antiplasmodial and cytotoxic effects, respectively. One of the isolated alkaloid derivatives, lycorine, exhibited antiplasmodial activity against both sensitive (3D7) and resistant (K1) parasite strains in the low micromolar range (half-maximal sample inhibitory concentration (IC50) values of 2.5 and 3.1 µM, respectively) and displayed a low cytotoxicity profile, with a selectivity index greater than 100. Our findings indicate that lycorine is a hit for antimalarial drug discovery. Keywords: isoquinolinic alkaloids; Amaryllidaceae; Plasmodium falciparum; lycorine; tazettin

    Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183.

    Get PDF
    Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a \u3e 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    LHCb muon system: Technical Design Report

    Get PDF
    corecore