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Abstract: Drug discovery is a highly complex and costly process, which demands integrated efforts in several relevant aspects involving 

innovation, knowledge, information, technologies, expertise, R&D investments and management skills. The shift from traditional to ge-

nomics- and proteomics-based drug research has fundamentally transformed key R&D strategies in the pharmaceutical industry ad-

dressed to the design of new chemical entities as drug candidates against a variety of biological targets. Therefore, drug discovery has 

moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. 

The combination of available knowledge of several 3D protein structures with hundreds of thousands of small-molecules have attracted 

the attention of scientists from all over the world for the application of structure- and ligand-based drug design approaches. In this con-

text, virtual screening technologies have largely enhanced the impact of computational methods applied to chemistry and biology and the 

goal of applying such methods is to reduce large compound databases and to select a limited number of promising candidates for drug de-

sign. This review provides a perspective of the utility of virtual screening in drug design and its integration with other important drug dis-

covery technologies such as high-throughput screening (HTS) and QSAR, highlighting the present challenges, limitations, and future per-

spectives in medicinal chemistry. 

Keywords: Drug design, virtual screening, QSAR, HTS, binding affinity. 

INTRODUCTION 

The identification of promising hits and the generation of high-
quality leads are crucial steps in the early stages of any drug dis-
covery project. Recent advances in medicinal chemistry at the inter-
face of chemistry and biology have created an important foundation 
in the search for new drug candidates possessing a combination of 
optimized pharmacodynamic and pharmacokinetic properties. De-
spite the impact of the recent technological and scientific advances, 
drug discovery has become more expensive and time consuming 
over the same period of time [1,2]. 

The widespread use of combinatorial chemistry and high-
throughput screening (HTS) for the discovery of lead compounds 
has created a large demand for small organic molecules that act on 
specific drug targets. These technologies focus on the generation of 
a huge number of molecules integrated with the biological screen-
ing of a very large number of samples. However, due to the ever 
increasing pressure to reduce drug development time and costs, 
there is a clear paradigm shift from the random screening of collec-
tions of compounds to a more rational process, which would di-
rectly affect the success rate of new chemical entity (NCE) genera-
tion and, therefore, improve pharmaceutical research and develop-
ment (R&D) productivity. The definition and assessment of both 
chemical and biological space have revitalized the screening proc-
ess model and emphasized the importance of exploring the intrinsic 
complementary nature of classical and modern methods in drug 
research. In this context, computational tools play an increasingly 
critical role in medicinal chemistry research programs [3,4]. 

Drug discovery is currently driven by innovation and knowl-
edge employing a combination of experimental and computational 
methods. One of the most important challenges for the pharmaceu-
tical industry is the identification of innovative NCEs from an in-
credibly large reservoir of real and virtual possible compounds. 
Several steps of the drug discovery process (e.g., hit identification, 
lead optimization, pharmacokinetic profile) can be improved in a 
rational way with the application of computational methods. Over 
the past decade, the high-performance computers, algorithms, 
methods and expertise have evolved and transformed structure-
based drug design (SBDD) methods in tools of large impact in  
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modern drug discovery [5,6]. Although several efforts have been 
made to improve our understanding of the three-dimensional inter-
actions involved in ligand-receptor binding and molecular recogni-
tion, it remains a major challenge for the computational technolo-
gies to accurately predict the binding affinity of new drug candi-
dates [7]. 

In the process of ligand binding, the Gibbs free energy is gov-
erned by a combination of complex intermolecular interactions 
which determines drug-receptor affinity. Therefore, in order to be 
able to understand the several steps involved and to predict ligand-
binding affinity, it is very useful a partition of the free energy of 
binding into individual, physically interpretable terms. This is not, 
of course, an easy issue to tackle, particularly concerning the rela-
tive calibration of the individual contributions against each other. 
On one hand, the enthalpic contributions to binding constant are 
reasonably well characterized in molecular descriptors that encode 
structural and shape information or empirical functions, such as 
molecular mechanics approximations and statistically derived atom-
type and distance-dependent pair potentials that explore the capa-
bilities of molecules to perform intermolecular interactions with a 
putative receptor [5,8,9]. On the other hand, entropic contributions 
are much more difficult to describe, particularly regarding solvent-
to-protein transfer, where both the size of the hydrophobic surface 
area and the release of water molecules from the active site should 
be considered. Furthermore, ligand conformational flexibility has 
long been recognized as an important issue, since immobilization of 
rotational bonds at the binding site involves important entropy 
changes. 

In order to estimate free energies associated with interactions 
between small-molecules and drug targets (e.g., enzymes, recep-
tors), ab initio calculations and free energy perturbation are the 
preferred computational methods [10]. However, the complexity of 
the calculations associated with the time-consuming procedures 
make these methods rarely applicable in drug design [5,10]. In con-
trast, protein-ligand docking is an area of intense interest to both 
academia and industry [11]. Computer programs dedicated to dock-
ing small-molecules into protein binding sites have been receiving 
considerable attention in recent years because of their wide applica-
tions in medicinal chemistry. Docking methods such as DOCK 
[12], GOLD [13], FlexX [14], GLIDE [15,16], AUTODOCK [17], 
and Surflex-Dock [18] are widely used for the high-throughput 
sampling of ligands into protein binding pockets, with concomitant 
determination of the most likely binding modes and the estimation 
of the relative binding affinity [19]. 
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Fig. (1). General procedure used in SBVS and LBVS. 

VIRTUAL SCREENING 

In general, the search for new biologically active molecules 
from large compound databases by means of computer-assisted 
techniques is a process known as virtual screening (VS). VS meth-
ods have rapidly become an essential component of the modern 
drug discovery process [20]. High-performance hardware and spe-
cialized software, combined with advanced knowledge of 3D pro-

tein structure and small-molecule binding modes, have made this 
technology a useful complement, and in some cases, a reasonable 
alternative to HTS. There are, fundamentally, two approaches to VS 
studies: i. structure-based virtual screening (SBVS), which requires 
knowledge of the 3D structures of target proteins to prioritize com-
pounds by their complementarity to the binding site; and, ii. ligand-
based virtual screening (LBVS), where no information on the pro-
tein is needed, instead, compounds known to bind to the protein are 
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used as queries to search databases for new molecules possessing 
biological activity [21-25]. Fig. (1) summarizes some important 
steps in both VS approaches. 

STRUCTURE-BASED VIRTUAL SCREENING (SBVS) 

In SBVS approaches, knowledge about the 3D structures of the 
target proteins is essential to perform in silico high-throughput re-
ceptor-ligand docking [26]. These macromolecular structures are 
usually determined by X-ray crystallography, NMR, and homology 
modeling [27-29]. Owing to its knowledge-based feature, VS 
strongly depends on the amount and quality of information avail-
able about the system under investigation. Regardless of what kind 
of protein will be employed as molecular target, important issues 
such as druggability of the target receptor, selection of the most 
relevant geometry, receptor flexibility, suitable assignment of pro-
tonation states and consideration of water molecules in binding site 
must be properly consider [24]. Another important step in SBVS is 
the appropriate design of databases of small-molecule candidates 
for the screening process. Usually, pharmaceutical companies pos-
ses their own private compound collections, which guarantee that 
the detected hits will be exclusive and will cover molecules for 
which the synthesis is well established. In addition, hundreds of 
thousands of commercially available compounds for VS can also be 
found in non-commercial databases or in-house collections of natu-
ral products and synthetic compounds, and so forth [24,30,31]. 

Screening libraries generally contain a large number of mole-
cules with broad chemical diversity [32]. Members of such libraries 
are usually large in terms of size, with an average molecular weight 
falling close to typical drug-size molecules. However, several ex-
amples from drug discovery programs have demonstrated that small 
core fragments known to bind with substantial affinity are more 
suitable starting points for further lead optimization [33,34]. There-

fore, in order to generate a suitable screening subset, several mo-
lecular filters are available for selecting those molecules with re-
quired features. As a general criteria, compounds are primarily 
studied with respect to their drug-like (molecules which generally 
obey Lipinski’s rule of five [35]) or lead-like (molecules which 
have lower molecular complexity when compared to drugs [36-38]) 
properties. Similarly, other important physicochemical features may 
be considered, as well as the pharmacokinetic profile (often referred 
to as ADME properties: Absorption, Distribution, Metabolism and 
Excretion). 

Pharmacophores derived from receptor mapping play an impor-
tant role in the design of focused collections of compounds. Due to 
an ever increasing number of structures solved and stored in the 
Protein Data Bank (PDB) [39], and also due to the development of 
methods that accurately probe and map ligand binding pockets in 
protein structures (GRID [40]; LUDI [41]; SuperStar [42]; Drug-
Score [9,43]), the use of pharmacophores in SBDD studies has been 
remarkably increased [6,44,45]. For the generation of structure-
based models, 3D pharmacophore hypotheses (Fig. 2) can be de-
rived by considering the information gathered by the superposition 
of X-ray crystallographic structures (Fig. 3) and also from the 
analysis of the requirements imposed by the binding site through 
the identification of favorable regions for intermolecular interac-
tions [46] (Fig. 4). The 3D pharmacophore queries are used to 
screen databases of compounds with the assistance of appropriate 
software, such as UNITY (Chemical Information Software, version 
4.1, Tripos), Catalyst [47], or FlexX-Pharm [48], and only those 
molecules that carry the pharmacophoric features in the 3D space 
are retrieved and selected for the next VS steps. 

One of the major challenges facing SBVS programs is the  
selection of an appropriate docking tool. The ligands (orientation 
and conformation) shall achieve the highest possible degree of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Representation of a structure-based 3D pharmacophore model. Acceptor-site features of the protein and the complementary corresponding partner 

donor features are shown in blue; donor-site features of the protein and the complementary corresponding partner acceptor features are shown in red; and, the 

donor/acceptor features and the corresponding donor/acceptor site features of the threonine residues are shown in magenta. 
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Fig. (3). Structural superposition of three crystal structures of T. cruzi GAPDH in complex with an analogue of 1,3-bisphospho-d-glyceric acid (PDB code: 

1QXS, in cyan), with an irreversible inhibitor 2-(2-phosphono-ethyl)-acrylic acid 4-nitro-phenyl ester (PDB code: 1ML3, in magenta), and with chalepin, a 

coumarin derivative inhibitor (PDB code: 1K3T, in green). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Mapping of putative binding “hot spots” in the active site of T. cruzi GAPDH. “Hot spots” indicate areas within the protein binding site where certain 

functional groups should preferably bind. Panels A and D highlight properties of bulky and hydrophobic groups in a putative ligand: sp3 carbon (orange) and 

DRY (yellow) as probes in DrugScore and GRID, respectively. Panels B and E highlight properties of a putative hydrogen-bond donor group in a ligand: amide 

nitrogen (blue) as probe in DrugScore and GRID. Panels C and F highlight properties of a putative hydrogen-bond acceptor group in a ligand: sp2 oxygen and 

carbonyl oxygen (both in red) as probes in DrugScore and GRID, respectively. 

molecular complementarity with respect to all binding sites of the 
receptor active site. Hence, the selection of the docking procedure 
is a crucial step for the success of the VS process. Currently avail-
able docking tools follow slightly different concepts, which make 
individual programs more suitable for a specific task. It is estimated 
that there are approximately 30 docking programs available [31]. 
The docking process involves the prediction of ligand orientation 
and conformation into the active site, followed by a measure of it 
fitness into the binding site (Fig. 5). 

In general, there are two main complex issues that must be ad-
dressed during docking simulations: i. accurate structural modeling; 
and, ii. correct prediction of activity. Predictions of ligand binding 

modes for small molecules in macromolecule binding sites are per-
haps the most straightforward step, where, in fact, a considerable 
degree of success has been achieved. The docking programs em-
ploy different search methods (algorithms) to treat ligand flexibil-
ity. The search methods are divided into three basic categories: i. 
Systematic methods, such as incremental construction, conforma-
tional search, Hammerhead algorithm and databases, which explore 
all degrees of freedom in a molecule in order to place ligands (mo-
lecular fragments) into active sites of proteins; ii. Random or Sto-
chastic methods, such as Monte Carlo and genetic algorithms (GA). 
The former generates several ligand configurations into the protein 
binding site and subsequently score the configurations in a multi-



Virtual Screening and Modern Drug Design Current Medicinal Chemistry,  2008 Vol. 15, No. 1      41 

step procedure, while the latter deals with principles of biological 
competition and population dynamics to place the ligand in active 
site; iii. Simulation methods, such as molecular dynamics (MD) and 
energy minimization, which describe the molecular docking process 
in more detail. The MD method is based on Newton’s equation of 
motion for an atomic system where atomic forces and masses are 
used to determine atomic positions over series of very small time 
steps. Energy minimization procedures are usually employed cou-
pled with other search methods, since only a local energy minimum 
is reached. For example, minimization steps are carried out after 
each fragment addition followed by a final minimization before 
scoring [49]. 

Docking algorithms are complemented by scoring functions 
that are designed to predict the biological activity through the 
evaluation of interactions between compounds and protein active 
sites. Once the configurations of a system are sampled, the docking 
programs score them to identify the most likely candidates for the 
true structure [31,49]. Essentially, three types or classes of scoring 
functions are currently applied: i. Force field-based, which usually 
employs molecular mechanics force fields to quantify the sum of 
energies related to the receptor–ligand interaction energies and the 
internal ligand energies; ii. Empirical, that is based on the concept 
that binding energies can be approximated by a sum of individual 
uncorrelated terms. This type of scoring function is fit to reproduce 
experimental data, such as binding energies and/or conformations, 
as a sum of several parameterized functions; iii. Knowledge-based 
scoring functions, which uses atomic interaction-pair potentials to 
derive statistical potentials of mean force from large sets of pro-
tein–ligand complexes. 

Scoring functions implemented in docking programs make dif-
ferent assumptions and simplifications in the evaluation of com-
plexes and do not fully account for a number of physical phenom-
ena that determine molecular recognition. For example, ligand-
binding events are driven by a combination of enthalpic and en-
tropic effects, where either entropy or enthalpy can dominate spe-
cific interactions. This often presents a conceptual problem for 
contemporary scoring functions, because most of them are much 
more focused on capturing energetic than entropic effects [50]. 
Several scoring functions have been design to reproduce binding 
energies of protein-ligand systems. Usually, databases of 50-300 
protein-ligand complexes are employed for validating the docking 
programs. Over the past years, a variety of scoring functions have 
been developed and assessed [11,51,52]. One of the most important 
parameters during the assessment procedures is the discriminatory 
power of the applied scoring function for ranking and enriching of 

potentially active binders at the top list of the docking solutions. It 
is, however, a hard issue to address most likely because many phys-
icochemical parameters and the general phenomena involved at the 
molecular level of the binding process are not yet fully understood. 
Therefore, these relevant features have not been incorporated into 
scoring functions in a proper way. It can be illustrated with the 
knowledge-based scoring function DrugScore [9], which was de-
veloped based on crystal structure information from the Cambridge 
Structural Database (CSD) [53] and protein-ligand complexes from 
the PDB [39]. This scoring function was employed to validate a test 
set of 56 crystallography complexes yielding an r2 value of 0.56 for 
the correlation between experimental and predicted binding affini-
ties [43]. This indicates that the generation of models possessing 
improved predictive ability (higher r

2 values) would require the 
incorporation of a better description of the complex molecular 
events related to binding affinity. 

Scoring function programs have different parameters which rely 
on distinct atom type schemes and atomic partial charges calcula-
tion methods, and have been trained on diverse ligand-protein data 
sets. As a result, each program returns a particularly different esti-
mate of relative binding affinity, and comparisons are nontrivial. To 
overcome this limitation, several approaches that assign low ranks 
to most of inactive compounds while assigning high ranks to most 
of active compounds have been proposed as alternative methods. 
One of the most common and employed strategy is to combine 
estimates from a variety of scoring functions into a single consen-
sus score [20]. Several reports show successful applications of this 
approach to improve hit rates significantly [54,55]. The impact of 
consensus scoring strategies in the enrichment of true positives 
(leads) in SBVS can be explained by the fact that the mean of re-
peated samplings tends to be closer to the true value than any single 
sampling, thus, since useful scoring functions perform well, differ-
ent methods will vote for some of the same actives [55,56]. This 
process contributes to a better understanding of the chemistry in-
volved in ligand binding and also improves the enrichment of true 
positives. Consensus scoring is a relatively recent field of research 
in drug design, with a history of about 10 years. Rapidly, it has 
become an important tool in the field of in silico technologies for 
drug discovery. However, significant improvements are required in 
the efficiency of the consensus scoring methods, mainly regarding 
the full description of the molecular events involved in the predic-
tion of binding affinity. Even though challenging issues such as the 
consideration of water molecules and protein flexibility are some-
what implemented by some docking tools, they still require sub-
stantial development to become more useful in drug design. Re-

 

 

 

 

 

 

 

 

Fig. (5). General docking procedure. Binding mode of the high-affinity selective inhibitor N6-(1-naphthalenemethyl)-2’-deoxy-2’-(3,5-dimethoxybenzamido) 

adenosine (NMD) to the GAPDH from L. mexicana (PDB code: 1I32) pocket. NMD minimum energy conformer (in white); NMD crystallographic conformer 

(in yellow); NMD docking solution (in green). 
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gardless of what kind of docking tool is considered, docking and 
scoring are critical issues in virtual drug screening methods. 

SUCCESSFUL APPLICATIONS OF SBVS 

A number of recent successful applications of SBVS can be 
found in the literature for an impressive variety of drug targets from 
different therapeutic areas [8,20,24,30,57]. For example, VS studies 
were performed on a potential antimalarial drug target of the reduc-
tase family, an enoyl–acyl carrier protein reductase (ENR), which 
plays an important role in Plasmodium falciparum membrane con-
struction and energy production and does not have a human ho-
molog [58]. In summary, employing a Monte Carlo global energy 
optimization for flexible ligand docking, a database of 336,600 
compounds from the ChemBridge Express Library (San Diego, CA) 
was fully screened. After applying some ADME filters, 169 com-
pounds with suitable pharmacokinetic properties were retrieved and 
experimentally tested for their ability to inhibit the ENR activity. In 
this investigation, 16 inhibitors were identified with three of them 
having IC50 values in the micromolar range (5, 10 and 25 M, Fig. 
6A), which fall close to the inhibitory activity of triclosan, a potent 
Pf-ENR inhibitor (IC50 = 4 M). In another example, a target pro-
tein of the STAT (Signal Transducer and Activator of Transcrip-
tion) family was studied [59]. Irregular activity of one of the family 
members (Stat3) contributes to carcinogenesis and tumor progres-
sion by up-regulating gene expression and promoting dysregulated 
growth. Described as a critical step in STAT activation, the dimeri-
zation between two Stat3 monomers presents an attractive target to 
inhibit Stat3 DNA-binding and transcriptional activity. Investiga-
tions were conducted with the GLIDE (Grid-based Ligand Docking 
from Energetics) software [15], which employs an incremental 
construction algorithm to explore ligand flexibility, for the screen-
ing of 150,829 compounds from the National Cancer Institute 
(NCI) chemical libraries. These studies identified the high-scoring 
compound NSC 74859 (Fig. 6B), which selectively inhibits Stat3 
DNA-binding activity in vitro with an IC50 value of 86 M (IC50 
values toward Stat1 and Stat5 were >300 M and 170 M, respec-
tively; no interaction with the Src protein family was observed, no 
significant effect on Erk1/2 or Shc, and low toxicity to cells with no 
aberrant Stat3). Furthermore, the compound induces growth inhibi-
tion and apoptosis of malignant cells as well as induces human 
breast tumor regression in xenograft models. 

LIGAND-BASED VIRTUAL SCREENING (LBVS) 

Ligand-based methods play an important role in medicinal 
chemistry and modern hit generation and lead identification. The 
discovery of a large number of novel biologically active compounds 
has been possible with the use of LBVS methods, for which no 3D 
information on the target protein is required [22,25]. In this ap-
proach, the screening process is based on the use of active com-
pounds as templates. Ligand-based screening techniques essentially 
focus on comparative molecular similarity analysis of compounds 
with known and unknown activity, regardless of the methods or 
algorithms used. LBVS methods can be divided into three major 

classes: i. Similarity searching, including 2D fingerprints (Tani-
moto, Cosine, Hamming, Russel-Rao, and Forbes coefficients) [60], 
rely on the Similar Property Principle. This principle states that 
molecules that are structurally related are likely to have similar 
properties, thus, databases of structurally similar molecules which 
have not been tested for biological activity are likely to have com-
pounds that exhibit the activity of interest; ii. Pharmacophore meth-
ods based on the pharmacophore concept, which is commonly de-
fined as a three-dimensional arrangement of molecular features or 
fragments forming a necessary, but not necessarily sufficient, con-
dition required for binding [61]. These methods involve the identi-
fication of the pharmacophoric pattern common to a set of known 
active compounds, and the use of this pattern in 3D substructure 
search; and, iii. Machine learning methods, in which a classification 
rule is developed from a training set containing known active and 
inactive molecules. For a more comprehensive review of similarity 
searching, pharmacophore generation and search, machine learning 
and artificial intelligence approaches, the readers are referred to 
recent excellent reviews [22,25,62-65].  

SUCCESSFUL APPLICATIONS OF LBVS 

There are numerous possible ways of applying LBVS strategies 
and several examples are available in the literature showing the 
usefulness of these methods to drug design [22,66]. For example, 
ligand-based methods were applied for the drug target enzyme 5-
lipoxygenase (5-LO), that catalyzes the first steps in the conversion 
of arachidonic acid into leukotrienes, which has been associated 
with atherosclerosis, cancer, and osteoporosis [67]. In the search for 
new bioactive compounds, 43 known 5-LO inhibitors were assem-
bled and used in similarity searching in the speedCATS software 
(Fig. 7A), which employs chemically advanced template search 
(CATS) descriptors [68]. Eighteen compounds were selected based 
on the smallest distance to their query molecules, and their 5-LO 
inhibitory activities were evaluated in a cell-based assay. Finally, 
two inhibitors from different structural classes exhibited submicro-
molar inhibitory activity in an intact PMNL cell assay (Fig. 7A). 
Another example involves the search for new ligands of the ATP-
sensitive potassium channels (KATP channels). KATP channels cou-
ple changes in blood glucose concentrations to insulin secretion in 
pancreatic ß-cells and are considered promising drug targets for the 
treatment of disorders resulting from excessive insulin release [69]. 
Accordingly, potassium channel openers (KCOs) comprise chemi-
cally heterogeneous classes of compounds and have demonstrated 
significant potential for the treatment of diabetes. In order to search 
for new KCOs chemotypes, LBVS studies were carried out employ-
ing a pharmacophore model comprising compounds from several 
structurally diverse classes [69], and a subset of the ZINC database 
with approximately 65,000 compounds. Pharmacokinetic properties 
were modeled by molecular interaction fields (MIF) based on Vol-
Surf descriptors, which retained about 1,900 compounds with drug-
like characteristics. Subsequently, pharmacodynamic properties 
were computed by GRIND (GRid-INdependent Descriptors) [70], 
FLAP (Fingerprints for Ligands and Proteins) [71] and TOPP (Trip-
lets Of Pharmacophoric Points) [72] methods, which are based on 

 

 

 

 

Fig. (6). Inhibitors discovered by SBVS. 
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MIF and molecular fingerprints. Six potent ligands of the KATP 
channels were used as a template for deriving the pharmacophore 
hypothesis (Fig. 7B). The top-ranked compounds according to the 
pharmacophore-based approaches were checked for chemical sta-
bility and toxicity by visual inspection, and a final set of 32 mole-
cules were retrieved. The effects on membrane potentials and glu-
cose-stimulated insulin release were assessed by HEK 293 and INS-
1 cell assays, respectively, revealing three compounds that were 
able to inhibit insulin release with micromolar potency (Fig. 7B). 

INTEGRATING VS AND HTS 

Modern drug discovery involves the integration of a wide vari-
ety of technologies and expertise in multidisciplinary research 
teams. The influence of the synergy effects between HTS and VS 
on the selection of hits and lead compounds is a good example of 
the possible integration of advanced technologies in drug discovery 
programs. However, it is worth noting that the two approaches are 
quite distinct in nature and procedures. On one hand, HTS is largely 
phenomenological and technology-driven, being much more influ-
enced by advances in automation and miniaturization [24,73]. This 
experimental procedure is costly, complex and labor intensive, with 
the estimated cost for a basic HTS process, without assay develop-
ment, being approximately US$75,000. Alone, biological screening 
and preclinical pharmacological testing account for about 15% of 
the total R&D expenditures of the pharmaceutical industry [73]. On 
the other hand, VS, a knowledge-driven approach, depends on the 
available information concerning target structure and small-
molecule chemical space. As a starting point, either the 3D struc-
ture of the macromolecular target or a known active ligand is a 
prerequisite for VS studies. This computational method offers econ-
omy, speed and flexibility to drive drug discovery projects.  

These technologies (VS and HTS) are complementary in the 
sense that they have mutual goals, that is, finding new hits and 
leads in drug research programs [24,74]. However, an important 
difference between them is related to the knowledge about the 

mechanism of action of ligands upon biological receptors. In the 
HTS process, no or little information is provided about the possible 
target binding site or mechanism of action of the selected ligands. 
In this situation, further structural and kinetic studies would be 
required to elucidate them. Conversely, VS methods are capable of 
selecting molecules based on a specific 3D target binding site, 
therefore, useful information about the binding mode and mecha-
nism of action could also be explored [75]. HTS commonly in-
volves running a primary screen assay (single replicate, single 
compound concentration) on a large collection of compounds, fol-
lowed by subsequent rounds of single-shot and dose–response 
screening. These rapid large-scale assays are monitored by spectro-
scopic methods such as fluorescence, absorbance and luminescence, 
being frequently performed in microtiter plates with 96–1536 wells. 
Since the biochemical assays are designed to screen hundreds of 
thousands of compounds per run, each plate usually contains inter-
nal control wells to ensure quality and comparability of results be-
tween plates [76]. Despite the fact that several strategies have been 
employed to monitor and control the quality and accuracy of the in 
vitro assays, key problems in HTS are the occurrence of false-
positive hits (molecules that appear to inhibit the target but turn out 
to be uninteresting compounds), and the prevalence of nonspecific 
or promiscuous inhibitors [77]. VS methods are valuable tools de-
signed for the search of large databases of compounds and selection 
of a reduced number of candidates for biological evaluation. The 
integration of VS techniques either previously or in connection with 
HTS methods has three fundamental objectives: i. to extend the 
scope of the screening to external databases; ii. to identify a larger 
number and structurally diverse hits; and, iii. to reduce the assay-to-
lead attrition rate observed from HTS [78]. VS concepts comple-
ment HTS by including compound-filtering techniques based on 
functions ranging from simple rule-based to more complex neural 
network architectures. This approach aims to enrich libraries with 
molecules that have desirable or drug-like properties, eliminating 
those compounds that have unwanted characteristics for new leads. 
Alternatively, VS also provides tools for HTS database analysis, 
being capable of extracting useful information for database mining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Inhibitors discovered by LBVS strategies in medicinal chemistry research programs. 
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Even though structures of target proteins are becoming increas-
ingly available, mainly owing to genomics, proteomics and bioin-
formatics advances, LBVS methods are still dominating the VS 
field, basically due to the fact that hit and lead information are the 
predominant source of knowledge in many cases [73]. The most 
frequently applied VS methods for HTS purposes rely on fast 2D 
descriptors employed by similarity-based methods. Thus, HTS hits 
are compared to each other to generate a hypothesis on the underly-
ing lead structure, and then structure-activity relationships (SAR) 
can be generated to guide future medicinal chemistry efforts. Basi-
cally, two main computer-aided strategies have been described for 
the identification of active compounds: i. sequential screening; and, 
ii. one-shot screening. Sequential screening aims to reduce the 

amount of compounds that need to be tested by selecting a subset 
from the original database for experimental evaluation and SAR 
studies. As for the one-shot screening, all of the database com-
pounds are experimentally evaluated, and the iterative construction 
of a model for an active compound is then carried out based on the 
classical train-and-test paradigm [22].  

The integration of HTS and VS shows that the combination of 
both experimental and computational efforts is feasible at many 
different levels of drug design, including library generation, com-
pound prioritization, and data analysis [79]. VS techniques can be 
used to analyze the growing number of noisy data points from HTS 
experiments, whereas HTS techniques can be used to validate VS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MESEXP = maximal electroshock experiment. Method for the identification of new drug candidates for 

partial and generalized seizures [85]. 

Fig. (8). Hits discovered using a combination VS and QSAR methods. 
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results [22]. It is important to emphasize that, in contrast to HTS, 
VS methods are more easily accessible to academic laboratories 
around the world, without the need for expensive materials, equip-
ments, and complex infrastructure that an empirical screen de-
mands. 

INTEGRATING VS AND QSAR 

Another important example of integration of modern technolo-
gies in drug discovery is the combination of VS and QSAR (Quan-
titative Structure-Activity Relationships). QSAR techniques gener-
ate descriptors based on molecular structures and uses computa-
tional algorithms to relate the key descriptors to the dependent 
property value of interest [80-85]. Medicinal chemistry studies 
aimed at elucidating fundamental aspects of the relationships be-
tween structural or property descriptors and biological activity are 
important in the understanding of the activity of interest and may 
enable the prediction of the biological property for new compounds 
[86-90]. QSAR has a long history in the drug discovery field, and 
reached a tremendous impact in the optimization of promising leads 
that act on specific targets. The availability of advanced molecular 
modeling techniques and several 2D and 3D QSAR methods has 
attracted the attention of many scientists around the world for the 
integration of computational drug design tools. Aiming at overcom-
ing the inherent limitations, the integration of VS and QSAR strate-
gies provides useful opportunities to partially fulfill each method 
limitation, as well as allows the capture and incorporation of valu-
able information for the design of new small-molecule drug candi-
dates. A variety of studies describing the integration of these drug 
design techniques has been reported in the literature [91-96]. For 
example, investigations were conducted for the discovery of inhibi-
tors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) [91], 
through the integration of 3D QSAR CoMFA (Comparative Mo-
lecular Field Analysis) models [97] and FlexE [98] pre-filters based 
on energy score. As a result, eight novel non-statin-like scaffolds 
with promising biological activity (Fig. 8A) were identified. An-
other important example is the development of 3D QSAR CoMSIA 
(Comparative Molecular Similarity Indices Analysis) models [99] 
for a series of structurally diverse modulators of the nonsteroidal 
progesterone receptor (PR) [92]. The QSAR models generated were 
useful for VS of novel selective nonsteroidal modulators as an al-
ternative receptor-specific scoring function for predicting binding 
affinities. Instead of searching for models capable of predicting the 
actual biological activity value, QSAR studies were performed to 
create models that enable assessment of hypothetical docking 
scores [93]. In this approach, QSAR models would be capable of 
identifying most probable nonbinders in docking databases, and 
also be used together with other pre-docking filters. Similarly, MLR 
(Multiple Linear Regression) models were developed for a series of 
chemokine receptor (CCR5) modulators, in order to create a useful 
alternative to filter out dissimilar compounds and to identify novel 
potent compounds [94]. 

Models designed for the prediction of new ligands even when 
no 3D receptor model is available have been described using a 
combination of QSAR and VS [95]. Owing to the wide application 
of QSAR methods, a huge number of molecular descriptors is 
available. Based on that, techniques that avoid the conformational 
and alignment ambiguities inherent to 3D QSAR methods have also 
been employed to produce predictive models useful for database 
mining and VS [94-96]. In this context, 3D and 2D QSAR models 
(CoMFA [97], VolSurf [100] and Hologram QSAR [101]) were 
assessed for the prediction of new ligands towards the nuclear re-
ceptor aryl hydrocarbon receptor (AhR) [95]. This study showed 
the robustness of “structural alignment free” methods as an interest-
ing alternative for VS. HQSAR and VolSurf are fast and highly 
predictive techniques capable of rapidly generating suitable models 
for VS of large databases of compounds. In addition, QSAR models 
derived by k nearest neighbor (kNN) and molecular topological 

descriptors were employed for the discovery of novel anticonvul-
sant agents [96]. In this study, ten QSAR models were used for the 
analysis of both Maybridge and National Cancer Institute (NCI) 
databases. Twenty-two compounds with high predicted activity 
values were selected and evaluated in vivo, leading to the discovery 
of seven new bioactive compounds (Fig. 8B). 

CONCLUSION 

Computational methods play a crucial role in modern medicinal 
chemistry, presenting a unique potential for transforming the early 
phases of drug research, particularly in terms of time and cost sav-
ings. In this scenario, SBVS and LBVS in combination with other 
techniques, such as HTS and QSAR, are useful synergistic ap-
proaches in drug discovery. VS techniques have been widely em-
ployed in the design of focused libraries, compound-filtering, data-
base-mining, and for the rapid analysis of large databases subjected 
to HTS procedures. Similarly, QSAR methods have been employed 
as useful tools for guiding the selection of compounds for high-
throughput analysis. VS strategies are influencing traditional strate-
gies to analyze large databases of chemical compounds in order to 
identify possible lead candidates with good pharmacodynamic and 
pharmacokinetic profiles. In summary, it is always important to 
understand the limits and scope of any computational tool, and to 
distinguish between those opportunities which are appropriate to 
apply the VS technology to purse a new drug candidate. 
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