8 research outputs found

    miR-455 Inhibits the Viability and Invasion by Targeting RAB18 in Hepatocellular Carcinoma

    No full text
    Background. Hepatocellular carcinoma (HCC) has been regarded as the fifth most common cancer worldwide with a low prognosis. miR-455 usually played the role of a tumor suppressor in multiple cancers. The aim of this study was to investigate the roles of miR-455 in HCC. Materials and Methods. Cell viability and invasion were measured by CCK8 and Transwell assays. Luciferase reporter assay was performed to verify that miR-455 directly binds to the 3′-noncoding region (UTR) of RAB18 mRNA in Huh7 cells. Results. The expression of miR-455 was lower in HCC tissues and cell lines than in nontumor tissues and normal cell line, and downregulation of miR-455 was connected with worse outcome of HCC patients. miR-455 suppressed cell proliferation in vitro and in vivo, and it inhibited the abilities of cell invasion and EMT in HCC. RAB18 was upregulated in HCC tissues and cell lines, and the expression of RAB18 was regulated by miR-455. RAB18 reversed partial roles of miR-455 on cell viability and invasion in HCC. Conclusion. miR-455 inhibited cell viability and invasion by directly targeting the 3′-UTR of RAB18 mRNA of hepatocellular carcinoma

    Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments

    No full text
    Although biodiversity and ecosystem functions are strongly shaped by contemporary environments, such as climate and local biotic and abiotic attributes, relatively little is known about how they depend on long-term geological processes. Here, along a 3000-m elevational gradient with tectonic faults on the Tibetan Plateau (that is, Galongla Mountain in Medog County, China), we study the joint effects of geological and contemporary environments on biological communities, such as the diversity and community composition of plants and soil bacteria, and ecosystem functions. We find that these biological communities and ecosystem functions generally show consistent elevational breakpoints at 2000-2800 m, which coincide with Indus-Yalu suture zone fault and are similar to the elevational breakpoints of soil bacteria on another mountain range 1000 km away. Mean annual temperature, soil pH and moisture are the primary contemporary determinants of biodiversity and ecosystem functions, which support previous findings. However, compared with the models excluding geological processes, inclusion of geological effects, such as parent rock and weathering, increases 67.9 and 35.9% of the explained variations in plant and bacterial communities, respectively. Such inclusion increases 27.6% of the explained variations in ecosystem functions. The geological processes thus provide additional links to ecosystem properties, which are prominent but show divergent effects on biodiversity and ecosystem functions: parent rock and weathering exert considerable direct effects on biodiversity, whereas indirectly influence ecosystem functions via interactions with biodiversity and contemporary environments. Thus, the integration of geological processes with environmental gradients could enhance our understanding of biodiversity and, ultimately, ecosystem functioning across different climatic zones

    Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia

    Get PDF
    Gross primary production (GPP) plays an important role in the net ecosystem exchange of CO2 between the atmosphere and terrestrial ecosystems. It is particularly important to monitor GPP in Southeast Asia because of increasing rates of tropical forest degradation and deforestation in the region in recent decades. The newly available, improved, third generation Normalized Difference Vegetation Index (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) group provides a long temporal dataset, from July 1981 to December 2011, for terrestrial carbon cycle and climate response research. However, GIMMS NDVI3g-based GPP estimates are not yet available. We applied the GLOPEM-CEVSA model, which integrates an ecosystem process model and a production efficiency model, to estimate GPP in Southeast Asia based on three independent results of the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from GIMMS NDVI3g (GPPNDVI3g), GIMMS NDVI1g (GPPNDVI1g), and the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 FPAR product (GPPMOD15). The GPP results were validated using ground data from eddy flux towers located in different forest biomes, and comparisons were made among the three GPPs as well as the MOD17A2 GPP products (GPPMOD17). Based on validation with flux tower derived GPP estimates the results show that GPPNDVI3g is more accurate than GPPNDVI1g and is comparable in accuracy with GPPMOD15. In addition, GPPNDVI3g and GPPMOD15 have good spatial-temporal consistency. Our results indicate that GIMMS NDVI3g is an effective dataset for regional GPP simulation in Southeast Asia, capable of accurately tracking the variation and trends in long-term terrestrial ecosystem GPP dynamics
    corecore