39 research outputs found

    Distribution and dynamics of Tc-99m-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice

    Get PDF
    Background: Tc-99m pertechnetate is a well-known anion, used for clinical imaging of thyroid function. This gamma emitter is transported by the sodium iodide symporter but is not incorporated into thyroglobulin. Scintigraphy using Tc-99m pertechnetate or 123 iodide represents a powerful tool for the study of sodium iodide symporter activity in different organs of living animal models. However, in many studies that have been performed in mice, the thyroid could not be distinguished from the salivary glands. In this work, we have evaluated the use of a clinically dedicated single-photon emission computed tomography (SPECT) camera for thyroid imaging and assessed what improvements are necessary for the development of this technique. Methods: SPECT of the mouse neck region, with pinhole collimation and geometric calibration, was used for the individual measurement of Tc-99m pertechnetate uptake in the thyroid and the salivary glands. Uptake in the stomach was studied by planar whole-body imaging. Uptake kinetics and biodistribution studies were performed by sequential imaging. Results: This work has shown that thyroid imaging in living mice can be performed with a SPECT camera originally built for clinical use. Our experiments indicate that Tc-99m pertechnetate uptake is faster in the thyroid than in the salivary glands and the stomach. The decrease in Tc-99m pertechnetate uptake after injection of iodide or perchlorate as competitive inhibitors was also studied. The resulting rate decreases were faster in the thyroid than in the salivary glands or the stomach. Conclusions: We have shown that a clinically dedicated SPECT camera can be used for thyroid imaging. In our experiments, SPECT imaging allowed the analysis of Tc-99m pertechnetate accumulation in individual organs and revealed differences in uptake kinetics

    From extraction of physiological features with dynamic µ-SPECT imaging to modelling of iodide biodistribution in stomach

    Get PDF
    This study investigates the potential retention of iodide in the stomach, for a better understanding of the iodide biodistribution in the body and more precisely of its potential antiseptic role. To that end, we will study the uptake of the 99m Tc-pertechnetate (an iodide ana-log) within the murine stomach observed thanks to a SPECT camera. The temporal evolution of the uptake is analysed thanks to a dedicated multi-compartment model. The addressed challenges consist in 1) estimating the time-activity curves for the different compartments, and 2) identifying the model parameters. Real experiments on different subjects demonstrate a quite good coherence of the computed parameters, and the computed parameter values suggested that there is some iodide retention in the stomach wall

    Positive Effects of Vitamin D Supplementation in Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-Controlled Trial

    Full text link
    peer reviewedRetrospective studies showed a relationship between vitamin D status and COVID-19 severity and mortality, with an inverse relation between SARS-CoV-2 positivity and circulating calcifediol levels. The objective of this pilot study was to investigate the effect of vitamin D supplementation on the length of hospital stay and clinical improvement in patients with vitamin D deficiency hospitalized with COVID-19. The study was randomized, double blind and placebo controlled. A total of 50 subjects were enrolled and received, in addition to the best available COVID therapy, either vitamin D (25,000 IU per day over 4 consecutive days, followed by 25,000 IU per week up to 6 weeks) or placebo. The length of hospital stay decreased significantly in the vitamin D group compared to the placebo group (4 days vs. 8 days; p = 0.003). At Day 7, a significantly lower percentage of patients were still hospitalized in the vitamin D group compared to the placebo group (19% vs. 54%; p = 0.0161), and none of the patients treated with vitamin D were hospitalized after 21 days compared to 14% of the patients treated with placebo. Vitamin D significantly reduced the duration of supplemental oxygen among the patients who needed it (4 days vs. 7 days in the placebo group; p = 0.012) and significantly improved the clinical recovery of the patients, as assessed by the WHO scale (p = 0.0048). In conclusion, this study demonstrated that the clinical outcome of COVID-19 patients requiring hospitalization was improved by administration of vitamin D

    Normalisation to Blood Activity Is Required for the Accurate Quantification of Na/I Symporter Ectopic Expression by SPECT/CT in Individual Subjects

    Get PDF
    The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used 99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to ‘noisy’, and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy

    Ça raconte quoi? Exposition 21 septembre / 27 octobre 2002

    No full text

    DOI: 10.1088/0031-9155/58/8/2657 Amplitude-based data selection for optimal retrospective reconstruction in micro-SPECT

    Get PDF
    Abstract. Respiratory motion can blur the tomographic reconstruction of PET or SPECT images, which subsequently impair quantitative measurements, e.g. in the upper abdomen area. Respiratory signal phase-based gated reconstruction addresses this problem, but deteriorates the signal-to-noise ratio and other intensity-based quality measures. This article proposes a 3D reconstruction method dedicated to micro-SPECT imaging of mice. From a 4D acquisition, the phase images exhibiting motion are identified and the associated list-mode data are discarded, which enables the reconstruction of a 3D image without respiratory artefacts. The proposed method allows a motion-free reconstruction exhibiting both satisfactory count statistics and accuracy of measures. With respect to standard 3D reconstruction (NG3D) without breathing motion correction, an increase of 14.6 % of the mean SUV has been observed, while, with respect to a gated 4D reconstruction (G4D), up to 60 % less noise and an increase of up to 124 % of the SNR have been demonstrated. SPECT, respiratory motion, image-based motion detection, amplitude-based gating and rodent
    corecore