7,563 research outputs found

    Study of alkaline hydrothermal activation of belite cements by thermal analysis

    Get PDF
    The effect of alkaline hydrothermal activation of class-C fly ash belite cement was studied using thermal analysis (TG/DTG) by determining the increase in the combined water during a period of hydration of 180 days. The results were compared with those obtained for a belite cement hydrothermally activated in water. The two belite cements were fabricated via the hydrothermal-calcination route of class-C fly ash in 1 M NaOH solution (FABC-2-N) or demineralised water (FABC-2-W). From the results, the effect of the alkaline hydrothermal activation of belite cement (FABC-2-N) was clearly differentiated, mainly at early ages of hydration, for which the increase in the combined water was markedly higher than that of the belite cement that was hydrothermally activated in water. Important direct quantitative correlations were obtained among physicochemical parameters, such as the combined water, the BET surface area, the volume of nano-pores, and macro structural engineering properties such as the compressive mechanical strength

    Nematic phase in the J1_1-J2_2 square lattice Ising model in an external field

    Get PDF
    The J1_1-J2_2 Ising model in the square lattice in the presence of an external field is studied by two approaches: the Cluster Variation Method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence of a new equilibrium phase, not previously reported for this model: an Ising-nematic phase, which shows orientational order but not positional order, between the known stripes and disordered phases. Suitable order parameters are defined and the phase diagram of the model is obtained. Monte Carlo simulations are in qualitative agreement with the CVM results, giving support to the presence of the new Ising-nematic phase. Phase diagrams in the temperature-external field plane are obtained for selected values of the parameter κ=J2/J1\kappa=J_2/|J_1| which measures the relative strength of the competing interactions. From the CVM in the square approximation we obtain a line of second order transitions between the disordered and nematic phases, while the nematic-stripes phase transitions are found to be of first order. The Monte Carlo results suggest a line of second order nematic-disordered phase transitions in agreement with the CVM results. Regarding the stripes-nematic transitions, the present Monte Carlo results are not precise enough to reach definite conclusions about the nature of the transitions.Comment: 13 pages, 10 figure

    Group Approach to the Quantization of the P\"oschl-Teller dynamics

    Full text link
    The quantum dynamics of a particle in the Modified P\"oschl-Teller potential is derived from the group SL(2,R)SL(2,R) by applying a Group Approach to Quantization (GAQ). The explicit form of the Hamiltonian as well as the ladder operators is found in the enveloping algebra of this basic symmetry group. The present algorithm provides a physical realization of the non-unitary, finite-dimensional, irreducible representations of the SL(2,R)SL(2,R) group. The non-unitarity manifests itself in that only half of the states are normalizable, in contrast with the representations of SU(2) where all the states are physical.Comment: 17 pages, LaTe

    Las actividades físico-deportivas en el medio natural y sus efectos sobre la salud y la calidad de vida : factores psicológicos asociados

    Get PDF
    Este trabajo presenta una análisis de los factores psicológicos asociados a un tipo concreto de actividad físico-deportiva que en los últimos años ha sufrido un importante auge: Las actividades físicodeportivas desarrolladas en un entorno natural. Tomando inicialmente, como punto de partida algunos planteaminetos teóricos desarrollados al respecto en la literatura especializada (Martin y Priest, 1986), efectuamos un estudio teórico-conceptual en referencia a las implicaciones de la práctica de este tipo de actividad deportiva sobre la salud y la calidad de vida, definiendo para ello los elementos que caracterizan a este tipo de actividades: riesgo-desafio, variedad-diversidad, diversión y superación personal. Finalmente se abordan los posibles efectos psicológicamente beneficiosos que pueden derivarse de su práctica. Entre las conclusiones aportadas, consideramos que esta tipologia de práctica físico-deportiva -debido a sus propiedades de caracter motivacional-, es una alternativa con ámplias posibilidades dentro del ámbito de la actividad física y su relación con la salud.This work presents an analysis of the psychological factors associated to a specific kind of sports and physical activities which are experimenting in the last years a significant increase: sports and physical activities in a natural environment. The start point of the analysis are certain theoretical approaches to the subject present in related specialized studies (Martin and Priest, 1986). A theoreticalconceptual study of the implications of the practice of this kind of activities on health and life quality is then developed, in which the elements characterizing this type of activities are defined: risk-challenge, varietydiversity, entertainment-personal improvement. We finally analize the possible psychological benefits

    Geometrical resonance in spatiotemporal systems

    Full text link
    We generalize the concept of geometrical resonance to perturbed sine-Gordon, Nonlinear Schrödinger and Complex Ginzburg-Landau equations. Using this theory we can control different dynamical patterns. For instance, we can stabilize breathers and oscillatory patterns of large amplitudes successfully avoiding chaos. On the other hand, this method can be used to suppress spatiotemporal chaos and turbulence in systems where these phenomena are already present. This method can be generalized to even more general spatiotemporal systems.Comment: 2 .epl files. Accepted for publication in Europhysics Letter

    Exact Ground States of the Periodic Anderson Model in D=3 Dimensions

    Get PDF
    We construct a class of exact ground states of three-dimensional periodic Anderson models (PAMs) -- including the conventional PAM -- on regular Bravais lattices at and above 3/4 filling, and discuss their physical properties. In general, the f electrons can have a (weak) dispersion, and the hopping and the non-local hybridization of the d and f electrons extend over the unit cell. The construction is performed in two steps. First the Hamiltonian is cast into positive semi-definite form using composite operators in combination with coupled non-linear matching conditions. This may be achieved in several ways, thus leading to solutions in different regions of the phase diagram. In a second step, a non-local product wave function in position space is constructed which allows one to identify various stability regions corresponding to insulating and conducting states. The compressibility of the insulating state is shown to diverge at the boundary of its stability regime. The metallic phase is a non-Fermi liquid with one dispersing and one flat band. This state is also an exact ground state of the conventional PAM and has the following properties: (i) it is non-magnetic with spin-spin correlations disappearing in the thermodynamic limit, (ii) density-density correlations are short-ranged, and (iii) the momentum distributions of the interacting electrons are analytic functions, i.e., have no discontinuities even in their derivatives. The stability regions of the ground states extend through a large region of parameter space, e.g., from weak to strong on-site interaction U. Exact itinerant, ferromagnetic ground states are found at and below 1/4 filling.Comment: 47 pages, 10 eps figure

    Effect of self-healing additions on the development of mechanical strength of cement paste

    Get PDF
    Important research efforts have been recently focused on the development of self-healing cement composites. The healing mechanism, implemented within the material, must be automatically initiated as soon as the first signs of damage appear at the micro-scale. For doing so, two different additions have been developed to incorporate them simultaneously into the cementitious matrix: silica microcapsules containing an epoxy sealing compound (CAP) and nanosilica particles functionalized with amine groups (NS). As a first step to the development of a self-healing concrete with these two additions, their pozzolanic activity has been measured by an accelerated test. The high values of fixed lime obtained at 28 days (85% for CAP, 93% for NS and 88% for a mix of them) suggest that they are suitable for construction materials’ applications. Furthermore, the behaviour of the additions in an ordinary Portland cement paste with 20 wt.% of commercial micro-silica has been studied, considering the partial substitution of micro-silica by CAP, NS and their mix. High values of compressive strength (>60 MPa) have been obtained in all cases after 28 days of hydration. However, while the addition of CAP induces a reduction of the compressive strength of the 24% with respect to the reference material, the addition of NS gives rise to a slight enhancement of the strength (5%) due to a pozzolanic reaction confirmed by X-ray diffraction data. Finally, in the presence of both CAP and NS, the beneficial effect of the nanosilica is counteracted by the microcapsules and a reduction of 28% is obtained for the compressive strength

    Chiral condensate thermal evolution at finite baryon chemical potential within Chiral Perturbation Theory

    Get PDF
    We present a model independent study of the chiral condensate evolution in a hadronic gas, in terms of temperature and baryon chemical potential. The meson-meson interactions are described within Chiral Perturbation Theory and the pion-nucleon interaction by means of Heavy Baryon Chiral Perturbation Theory, both at one loop, and nucleon-nucleon interactions can be safely neglected within our hadronic gas domain of validity. Together with the virial expansion, this provides a systematic expansion at low temperatures and chemical potentials, which includes the physical quark masses. This can serve as a guideline for further studies on the lattice. We also obtain estimates of the critical line of temperature and chemical potential where the chiral condensate melts, which systematically lie somewhat higher than recent lattice calculations but are consistent with several hadronic models. We have also estimated uncertainties due to chiral parameters, heavier hadrons and higher orders through unitarized Chiral Perturbation Theory.Comment: 15 pages, 15 figures, 3 tables, ReVTeX. Version to appear in Phys. Rev. D. References added. More conservative estimate of applicability domain, with new figure. More detailed explanation of final results with two more figures. Results unchange
    corecore