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We construct a class of exact ground states of three-dimensional periodic Anderson models �PAMs�, includ-
ing the conventional PAM, on regular Bravais lattices at and above 3/4 filling, and discuss their physical
properties. In general, the f electrons can have a �weak� dispersion, and the hopping and the nonlocal hybrid-
ization of the d and f electrons extend over the unit cell. The construction is performed in two steps. First the
Hamiltonian is cast into positive semidefinite form using composite operators in combination with coupled
nonlinear matching conditions. This may be achieved in several ways, thus leading to solutions in different
regions of the phase diagram. In a second step, a nonlocal product wave function in position space is con-
structed which allows one to identify various stability regions corresponding to insulating and conducting
states. The compressibility of the insulating state is shown to diverge at the boundary of its stability regime.
The metallic phase is a non-Fermi-liquid with one dispersing and one flat band. This state is also an exact
ground state of the conventional PAM and has the following properties: �i� it is nonmagnetic with spin-spin
correlations disappearing in the thermodynamic limit, �ii� density-density correlations are short ranged, and �iii�
the momentum distributions of the interacting electrons are analytic functions, i.e., have no discontinuities even
in their derivatives. The stability regions of the ground states extend through a large region of parameter space,
e.g., from weak to strong on-site interaction U. Exact itinerant, ferromagnetic ground states are found at and
below 1/4 filling.
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I. INTRODUCTION

The periodic Anderson model �PAM� is the basic micro-
scopic model for the investigation of compounds with heavy-
fermion or intermediate-valence properties such as cerium or
uranium.1 The model describes f electrons which interact via
a strong on-site Coulomb repulsion U and hybridize with
noninteracting d electrons. In the simplest case the f elec-
trons are assumed dispersionless, the hybridization purely
local, and the d-electron hopping nonzero only between
nearest-neighbor sites. However, for real systems this is an
oversimplification since there is experimental evidence for
�i� a weak, but finite dispersion of the f electrons, especially
in uranium compounds,2–4 �ii� nonlocal contributions to the
hybridization, and �iii� hopping of the d electrons beyond
nearest neighbors.5

Recently the PAM was employed to study the dramatic
volume collapse at the �→� transition in cerium
compounds.6–8 These investigations called attention to the
possibility of a Mott metal-insulator transition in the PAM.
In fact, a remarkable similarity between the Hubbard model
with nearest-neighbor hopping9 and the PAM with nearest-
neighbor hybridization and d hopping9–12 was found. These
results show that the range of the hopping and hybridization
in the PAM are quite important but still poorly understood.

In this situation exact results on the existence of insulat-
ing and metallic phases in the PAM and their dependence on
the hopping, hybridization, and interaction parameters are
particularly desirable—especially in three dimensions. So far
exact results for the PAM were mostly limited to special
regions of parameter space, namely, for infinite repulsion of
the f electrons,13–15 and for finite repulsion in low dimen-
sions D=1,2.16–19

In this paper we not only present details of the construc-
tion and the physical properties of a class of exact ground
states of three-dimensional �D=3� periodic Anderson models
reported in Ref. 20, but extend the range of applicability of
our approach substantially. In particular, we �i� demonstrate
the uniqueness of the metallic and insulating solutions dis-
covered at 3 /4 filling,20 �ii� explicitly present and analyze the
nonlinear matching conditions connecting the starting
Hamiltonian to the transformed Hamiltonian, �iii� deduce the
current operator and the sum rule for the charge conductivity,
�iv� derive several local and global expectation values such
as the magnetization of the system, �v� calculate correlation
functions, �vi� extend the solutions to the conventional PAM
case, and �vii� show that, by employing different procedures
to cast the Hamiltonian into positive semidefinite form, one
arrives at exact ground states in different regions of the pa-
rameter space.

The paper is structured as follows. In Sec. II we present
the Hamiltonian, discuss its transformation into positive
semidefinite form, and construct a class of exact ground
states. Section III describes the localized solution, and Sec.
IV characterizes the metallic non-Fermi-liquid state. In Sec.
V the approach is generalized, leading to solutions in other
regions of parameter space, and in Sec. VI the results are
summarized. Technical details are discussed in Appendixes
A–E.

II. TRANSFORMATION OF THE HAMILTONIAN AND
CONSTRUCTION OF EXACT GROUND STATES

A. General form of the periodic Anderson model

We consider a general form of the periodic Anderson
model describing noninteracting d electrons which hybridize
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with interacting f electrons. In contrast to the conventional
PAM we do not assume the f electrons to be localized, i.e.,
the Hamiltonian is given by

Ĥ = Ĥ0 + ĤU, �1a�

Ĥ0 = �
k,�

���k
dn̂k�

d + �k
f n̂k�

f � + �Vkd̂k�
† f̂k� + Vk

* f̂k�
† d̂k��� ,

�1b�

ĤU = U�
i

n̂i,↑
f n̂i,↓

f . �1c�

We denote the two types of electrons by b=d , f , i.e., b̂k�
†

creates a b �=d , f� electron with momentum k and spin �.
The corresponding particle number operators are n̂k�

b

= b̂k�
† b̂k�, and the dispersion relations of the b electrons are

given by �k
b. Furthermore, the hybridization amplitude and

the local �Hubbard� interaction are denoted by Vk and U,
respectively.

In real space the model is defined on a general Bravais
lattice in D=3 dimensions, with a unit cell I defined by the
primitive vectors �x��, �=1,2 ,3. The noninteracting part of

the Hamiltonian Ĥ0 reads

Ĥ0 = �
i,�

��
r

��tr
dd̂i,�

† d̂i+r,� + tr
f f̂ i,�

† f̂ i+r,�� + �Vr
d,fd̂i,�

† f̂ i+r,�

+ Vr
f ,d f̂ i,�

† d̂i+r,�� + H.c.� + �V0d̂i,�
† f̂ i,� + H.c.� + Efn̂i,�

f 	 ,

�2�

where tr
b characterizes the hopping of b electrons between

sites i and i+r, Vr
b,b� is the hybridization of b and b� elec-

trons at sites i and i+r, V0 is the on-site hybridization, and Ef
is the local on-site f-electron energy. The separation between
a site i and its neighbors in the unit cell is denoted by r, with

r�0. While the amplitudes tr
b are real, V0 ,Vr

b,b� can, in prin-

ciple, be complex �whether Vr
b,b� is real, imaginary, or com-

plex depends on the linear combination of the corresponding
electronic orbitals and hence on the lattice
symmetry9,18,21–23� and obey the relations

�k
b = Ef�b,f + �

r
�tr

be−ikr + tr
b*e+ikr� , �3�

Vk = V0 + �
r

�Vr
d,fe−ikr + Vr

f ,d*e+ikr� .

In particular, for tr
f =0, the f electrons are localized, and

the model reduces to the conventional PAM.

B. Transformation of the Hamiltonian

1. Representation of sites in a unit cell

The separation from a site i in Eq. �2� is indicated by the
vector r which corresponds to neighboring sites located in
different coordination spheres. In our investigation r may

extend over a unit cell I of a general Bravais lattice in
D=3. This implies 26 different intersite hopping and nonlo-
cal hybridization amplitudes. To avoid multiple counting of
contributions by the H.c. term in Eq. �2� the vector r must be
properly defined. To this end the sites within Ii, the unit cell
defined at site i, are denoted by rIi

= i+r���, with r���=�x1

+�x2+�x3; � ,� ,�=0,1. As shown in Fig. 1 the eight sites
rIi

can be numbered by the indices n�� ,� ,��=1+�+3�
+4�−2�� without reference to Ii. Then r=r������−r���,
with n��� ,�� ,����n�� ,� ,��, connects any two sites
within a unit cell. It corresponds to half of the 26 possibili-
ties, i.e., to the 13 possibilities x1, x2, x3, x2±x1, x3±x1,
x3±x2, x3±x2±x1. The remaining �negative� values of
r are taken into account in Eq. �2� by the H.c. contributions.

2. Transformation of Ĥ into positive semidefinite form

To construct exact ground states the Hamiltonian Ĥ
needs to be rewritten in terms of positive semidefinite
operators. This is made possible24 by the construction of two

new operators—one for the transformation of Ĥ0 and one

for ĤU
The first of these operators is the “unit cell operator”

ÂIi,�
† which represents a superposition of fermionic operators

creating d or f electrons with spin � inside every unit cell
Ii as

ÂIi,�
† = �

n��,�,��=1

8

�an,d
* d̂i+r�,�,�,�

† + an,f
* f̂ i+r�,�,�,�

† �

= �a1,d
* d̂i,�

† + a2,d
* d̂i+x1,�

† + a3,d
* d̂i+x1+x2,�

† + a4,d
* d̂i+x2,�

†

+ ¯ + a8,d
* d̂i+x2+x3,�

† � + �a1,f
* f̂ i,�

† + a2,f
* f̂ i+x1,�

†

+ a3,f
* f̂ i+x1+x2,�

† + a4,f
* f̂ i+x2,�

† + ¯ + a8,f
* f̂ i+x2+x3,�

† � .

�4�

Because of the translational symmetry of the lattice, the nu-

FIG. 1. A unit cell Ii connected to an arbitrary site i showing the
primitive vectors x� and indices n of the sites in I. Arrows depict
some of the hopping and hybridization amplitudes �J= t ,V� defined
within Ii.
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merical prefactors an,b
* , n=n�� ,� ,��, are the same in every

unit cell. The composite operators ÂIi,�
† do not obey canoni-

cal anticommutation rules, since �ÂI,� , ÂI�,��
† ��0 for all

I� I�. This is because ÂIi,�
† creates electrons also at the

boundaries of the unit cell Ii with neighboring unit cells. It

should be stressed that for this reason ÂIi,�
† has a genuine

dependence on the lattice structure and thereby on the spatial

dimension. Furthermore the relations �ÂI,�
† , ÂI�,��

† �
= �ÂI,� , ÂI�,���=0 and �ÂI,� , ÂI,�

† �=Kd+Kf ,Kb=�n=1
8 
an,b
2

imply

�ÂI,�
† �2 = 0, �5a�

− ÂI,�
† ÂI,� = ÂI,�ÂI,�

† − �Kd + Kf� . �5b�

The second operator P̂ originates from the relation

�in̂i,↑
f n̂i,↓

f = P̂+�i,�n̂i,�
f −N	, where

P̂ = �
i

P̂i, P̂i = n̂i,↑
f n̂i,↓

f − �n̂i,↑
f + n̂i,↓

f � + 1, �6�

and N	 is the number of lattice sites. The local operators

P̂i are positive semidefinite and assume their lowest eigen-
value �=0� whenever there is at least one f electron on

site i. By contrast, the interaction operator ĤU itself, which
is also positive semidefinite for U�0, assumes the
eigenvalue 0 only if the double occupancy is exactly zero.

For this reason P̂ is more useful for our investigation

than ĤU.
Taking into account periodic boundary conditions and al-

lowing r to take only the values discussed above, Eqs. �1a�
and �2� may be written as

Ĥ = P̂A + UP̂ + Eg, �7�

where P̂A=�i,�ÂIi,�
ÂIi,�

† , Eg=KdN+UN	−2N	�2Kd−Ef�, and
N is the total number of particles, which is assumed to be
fixed.

For Eq. �7� to reproduce Eq. �1a� prefactors an,b
* in ÂIi�

†

must be expressed in terms of the microscopic parameters tr
d,

tr
f , Vr, Vr

*, V0, V0
*, Ef, and U, for all r� Ii, taking into account

periodic boundary conditions. This leads to 55 coupled, non-
linear matching conditions which can be written in compact
notation as20

�
�1,�2,�3=−1

1 ��
i=1

3

D�i,�i	an+,b
* an−,b� = Tr̄,


b,b�.

These matching conditions have the explicit forms

Jx1

b,b� = a1,b
* a2,b� + a4,b

* a3,b� + a5,b
* a6,b� + a8,b

* a7,b�,

Jx2+x1

b,b� = a1,b
* a3,b� + a5,b

* a7,b�,

Jx2

b,b� = a1,b
* a4,b� + a2,b

* a3,b� + a6,b
* a7,b� + a5,b

* a8,b�,

Jx3+x1

b,b� = a1,b
* a6,b� + a4,b

* a7,b�,

Jx3

b,b� = a1,b
* a5,b� + a2,b

* a6,b� + a3,b
* a7,b� + a4,b

* a8,b�,

Jx3+x2

b,b� = a1,b
* a8,b� + a2,b

* a7,b�,

Jx2−x1

b,b� = a2,b
* a4,b� + a6,b

* a8,b�,

Jx3−x1

b,b� = a2,b
* a5,b� + a3,b

* a8,b�,

Jx3−x2

b,b� = a4,b
* a5,b� + a3,b

* a6,b�,

Jx3+x2+x1

b,b� = a1,b
* a7,b�, Jx3+x2−x1

b,b� = a2,b
* a8,b�,

Jx3−x2+x1

b,b� = a4,b
* a6,b�,

Jx3−x2−x1

b,b� = a3,b
* a5,b�, V0 = − �

n=1

8

an,d
* an,f, U + Ef = Kd − Kf ,

�8�

where Jr
b,b�=−��b,b�tr

b+ �1−�b,b��Vr
b,b��, b ,b�=d , f .

Details of this transformation are presented in
Appendix A.

C. Construction of exact ground states

Apart from the constant term Eg in Eq. �7� Ĥ is a
positive semidefinite operator. A state 
�g� which satisfies
the conditions

P̂i
�g� = 0, �9a�

ÂIi,�
† 
�g� = 0 �9b�

for all i, and which contains all linearly independent states
with properties �9a� and �9b�, will then be the exact ground

state of Ĥ with energy Eg. Since the kernel of an arbitrary

operator Ô, ker�Ô�, is defined by the linearly independent

states 
�� satisfying Ô
��=0, the relations �9a� and �9b� de-

fine the kernel of the operators P̂ and P̂A, respectively. Con-

sequently, 
�g� spans the common part of ker�P̂� and ker�P̂A�
denoted by the Hilbert space

Hg = ker�P̂A� � ker�P̂� . �10�

Using this definition it is ensured that 
�g� is the complete
ground state, and that supplementary degeneracies of Eg do
not occur.

Using Eqs. �6� and �9a� it follows that ker�P̂� is defined

by states F̂†
0�=�i=1
N	F̂i

†
0�, where F̂i
†= �i,↑ f̂ i,↑

† +i,↓ f̂ i,↓
† � and

i,� are arbitrary coefficients. Obviously F̂† creates one f
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electron on every site i. Furthermore, Eqs. �5a� and �9b�
imply that ker�P̂A� is defined by states Ĝ†
0�, where

Ĝ†=�i=1
N	�ÂIi,↑

† ÂIi,↓
† � creates at most two �d or f� electrons on i.

Since Ĝ† also creates contributions without f electrons, Eq.
�10� implies the �unnormalized� ground state


�g� = Ĝ†F†
0� = �
i=1

N	

�ÂIi,↑
† ÂIi,↓

† F̂i
†�
0� �11�

at N=3N	, e.g., 3 /4 filling. Clearly, 
�g� has the desired

property Ĥ
�g�=Eg
�g� and spans Hg at 3 /4 filling. Thus it

is the exact ground state of Ĥ with energy Eg.

Since the operator F̂† was introduced into 
�g� to take

into account the operator P̂ in Eq. �7�, i.e., the Hubbard
interaction U, 
�g� can only be a ground state for U�0.

Equation �11� implies that �i� the linearly independent ba-

sis vectors of Hg have the form 
�g��i��= Ĝ†F̂��i�
† 
0�, where

F̂��i�
† =�i=1

N	 f̂ i,�i

† , and �ii� Ĝ† does not contribute to the total
spin of the ground state. The overall degeneracy and total
spin S� �0,N	 /2� of 
�g� are then determined only by the
�arbitrary� set of coefficients i,� �see also Secs. III A 2 and
IV E and Ref. 25�. Consequently, the degeneracy of Eg is
determined by the �high� spin degeneracy of 
�g�. Since in

�g� all possible values S and orientations S occur the
ground state is globally nonmagnetic.26

Exact ground states can also be constructed away
from 3/4 filling. For example, the operator

V̂M
† =� j=1

M ��i=1
N	�b=d,f ,�ai,j,�

b b̂i,�
† � with numerical coefficients

ai,j,�
b creates M �N	 additional particles in the system

such that


�g� = �
i=1

N	

�ÂIi,↑
† ÂIi,↓

† F̂i
†�V̂M

† 
0� �12�

is a ground state for U�0 and N�3N	.

III. EXACT LOCALIZED GROUND STATE

The physical properties of 
�g� depend on the values of
the coefficients an,b in Eq. �4� which are solutions of Eq. �8�
for given microscopic parameters. We now identify different
solutions for nonlocal hybridization amplitudes with
Vr

df =Vr
fd=Vr and discuss their physical properties. We start

with a localized ground state at 3 /4 filling.

A. Derivation of the localized ground state

From Eq. �4� it follows that if an,d
* and an,f

* are propor-

tional, i.e., an,d
* = pan,f

* for all n, the operators ÂIi,�
† take the

form

ÂIi,�
† = �

n��,�,��=1

8

an��,�,��,f
* Ei+r�,�,�,�

† , �13�

where Êi,�
† = �pd̂i,�

† + f̂ i,�
† �. The ground state 
�g�, Eq. �11�,

then transforms into 
�loc�=�i=1
N	�Êi,↑

† Êi,↓
† F̂i

†�
0�. Evaluating

the product Êi,↑
† Êi,↓

† F̂i
†, one finds


�loc� = �
i=1

N	 ��
�

i,��pd̂i,↓
† d̂i,↑

† f̂ i,�
† + f̂ i,↑

† f̂ i,↓
† d̂i,�

† �	
0� . �14�

Since �loc 
�loc�= �1+ 
p
2�N	�i=1
N	�
i,↑
2+ 
i,↓
2��0 the

ground state is well defined.

1. The insulating nature of the ground state

The state 
�loc� has exactly three particles on each site,
corresponding to a uniform electron distribution in the sys-
tem. Indeed, for n̂i=�b=d,f��n̂i,�

b one finds n̂i
�loc�=3
�loc�.
Denoting ground-state expectation values in terms of 
�loc�
by ¯�, one obtains

d̂i,�
† d̂j,��� = 0, d̂i,�

† f̂ j,��� = 0,

�15�
 f̂ i,�

† d̂j,��� = 0,  f̂ i,�
† f̂ j,��� = 0,

for all � ,�� and all i� j. Hence hopping or nonlocal hybrid-
ization does not occur.

By separating the Hamiltonian Ĥ into an itinerant

part Ĥitin=�rĤitin�r� and a complementary localized part

Ĥloc= Ĥ− Ĥitin �see Appendix B�, and using Eq. �15�, one

finds Ĥitin�r��=0 for all r, and Ĥloc�=Eg. This clearly dem-
onstrates the localized nature of the ground state. Further-
more, from Eq. �B3�, the sum rule for the charge conductiv-
ity is obtained as �0

�d� Re ��,����=0. Since Re ��,���� is
non-negative this relation implies Re ��,����=0. In particu-
lar, Re ��,��0�=0, the dc conductivity, is also zero. The
ground state �14� is therefore insulating.27,28 It should be
noted that the nature of this state is quite nontrivial, since the
localization of the electrons is due to a subtle quantum me-
chanical interference between states with two d and one f
electron �di,↑

† di,↓
† f i,�

† � and two f and one d electron �f i,↑
† f i,↓

† di,�
† �

on every site i.
A state with Re ��,����=0 for all � appears to be rather

unphysical since it implies that not only the dc conductivity
but even the dynamic conductivity vanishes for all excitation
energies. It should be stressed, however, that the relation
Re ��,����=0 was derived in the framework of the Kubo
formula for the charge conductivity, i.e., within linear re-
sponse theory. Consequently, this result is not valid at high
excitation energies �.

2. Global magnetic properties

The expectation value of the spin29 in terms of the ground
state �14� in Cartesian coordinates is found as

Ŝ� = x�
i=1

N	 i,↓i,↑
* + i,↑i,↓

*

2�
i,↑
2 + 
i,↓
2�
+ y�

i=1

N	 �− i��i,↓i,↑
* − i,↑i,↓

* �
2�
i,↑
2 + 
i,↓
2�

+ z�
i=1

N	 
i,↑
2 − 
i,↓
2

2�
i,↑
2 + 
i,↓
2�
, �16�

where 
x
= 
y
= 
z
=1. The total spin is seen to depend on the
arbitrary coefficients �i,��. Here the site dependence of the
i,� coefficients should be stressed. Namely, by choosing
i,�=� one obtains
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Ŝ2� =
N	

2
�N	

2
+ 1	, Ŝz� =

N	

2

�
↑
2 − 
↓
2�
�
↑
2 + 
↓
2�

, �17�

which represents a ferromagnetic state with maximal total

spin S /N	=1/2, leading to �Ŝ2� /N	=1/2 in the thermody-
namic limit; � is seen to influence only the orientation of S.

The minimal total spin can be found by considering two
distinct subsystems of arbitrary shape, both containing the
same number of lattice sites N	 /2. Taking i,�=� ,i,−�

=0 in each subsystem one finds

�Ŝ2�
N	

=
1

�2N	

, Ŝx� = Ŝy� = Ŝz� = 0, �18�

which implies zero total spin �i.e., a global singlet state� in
the thermodynamic limit. Depending on the choice of the
parameters �i,�� all values of S between these two extreme
values for S, and all orientations of S, can be constructed
�see Sec. II C�.

3. Local magnetic properties

Analyzing the local magnetic properties of the ground
state one observes that the expectation value of the double
occupancy per site for both b=d , f electrons is smaller
than unity since n̂i,↑

b n̂i,↓
b �= ��b,f + 
p
2�b,d� / �1+ 
p
2�. Conse-

quently, each site carries a local moment. Indeed, irrespec-

tive of the values of i,� and p one has Ŝi
2�=3/4 on each

site i; this is the result of a quantum mechanical superposi-
tion of the corresponding contributions of d and f electrons.
The f and d moments do not compensate each other locally
since

�Ŝi,f� + Ŝi,d����
�


i,�
2	 = x Re�i,↓i,↑
* � + y Im�i,↓i,↑

* �

+ z

i,↑
2 − 
i,↓
2

2
, �19�

where Ŝi,d�= 
p
2Ŝi,f� holds. Furthermore, taking into ac-
count fixed �but arbitrary� i,� the spin-spin correlation func-
tion for i� j is found as

Ŝi
zŜj

z� =
1

4


i,↑
2 − 
i,↓
2


i,↑
2 + 
i,↓
2

j,↑
2 − 
j,↓
2


j,↑
2 + 
j,↓
2
,

�20�

Ŝi
+Ŝj

−� =
i,↓i,↑

*


i,↑
2 + 
i,↓
2
j,↑j,↓

*


j,↑
2 + 
j,↓
2
.

An average over all possible values of i,� ,j,� therefore
implies SiSj�=0. Therefore, in spite of the existence of
local moments the system is globally nonmagnetic; this
is a consequence of the large spin degeneracy of the ground
state.

B. Solutions of the matching conditions

The matching conditions �8� for the nonlocal hybridiza-
tion amplitudes along the space diagonals of the unit cell
read

− Vx3+x2+x1
= a1,d

* a7,f = a1,f
* a7,d,

− Vx3+x2−x1
= a2,d

* a8,f = a2,f
* a8,d,

− Vx3−x2+x1
= a4,d

* a6,f = a4,f
* a6,d, �21�

− Vx3−x2−x1
= a3,d

* a5,f = a3,f
* a5,d.

They hold for all �x��, �=1, 2, 3, and hence imply an,d
* /an,f

*

=an�,d /an�,f = p= p*. Since for real p, Eq. �8� leads to the
relations

tr
f =

tr
d

p2 , Vr =
tr
d

p
,

U + Ef

V0
=

1 − p2

p
, �22�

real p are seen to imply real hybridization amplitudes. In
addition to Eq. �22�, Eq. �8� yields the following system of
14 coupled nonlinear equations:

− tx1

d = a1,d
* a2,d + a8,d

* a7,d + a4,d
* a3,d + a5,d

* a6,d,

− tx2

d = a1,d
* a4,d + a6,d

* a7,d + a2,d
* a3,d + a5,d

* a8,d,

− tx3

d = a1,d
* a5,d + a3,d

* a7,d + a2,d
* a6,d + a4,d

* a8,d,

− tx2+x1

d = a1,d
* a3,d + a5,d

* a7,d, − tx2−x1

d = a2,d
* a4,d + a6,d

* a8,d,

− tx3+x1

d = a1,d
* a6,d + a4,d

* a7,d, − tx3−x1

d = a2,d
* a5,d + a3,d

* a8,d,

− tx3+x2

d = a1,d
* a8,d + a2,d

* a7,d, − tx3−x2

d = a4,d
* a5,d + a3,d

* a6,d,

− tx3+x2+x1

d = a1,d
* a7,d, − tx3+x2−x1

d = a2,d
* a8,d,

− tx3−x2+x1

d = a4,d
* a6,d,

− tx3−x2−x1

d = a3,d
* a5,d, pV0 = − �

n=1

8


an,d
2. �23�

They determine the unknown complex coefficients an,d �i.e.,
16 unknown real values� from the input parameters tr

d. A
study of the possible solutions shows that for 
p
�1 the rela-
tive sizes of the hopping and hybridization amplitudes are
physically very reasonable, e.g., 
tx1

f 
� 
tx1

d 
, 
tx1+x2

d 
� 
tx1

d 
,

tx1+x2

f 
� 
tx1

f 
. That is, they decrease with increasing
distance, and the magnitudes of the amplitudes of the d
electrons are larger than those of the almost localized f
electrons.

Based on Eq. �7�, the corresponding ground-state energy
becomes Eg /N	=−U+ �1−2/ p2��n=1

8 
an,d
2. Depending on
the solution, Eg has a nontrivial structure which will be ana-
lyzed below.
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1. Solution for a cubic lattice

For a simple cubic lattice one has tx1

d = tx2

d = tx3

d = t1
d, tx2±x1

d

= tx3±x1

d = tx3±x2

d = t2
d, tx3±x2±x1

d = t3
d. Then Eq. �23� has a solution

a1,d = a1, a2,d = a4,d = a5,d = ua1,
�24�

a3,d = a6,d = a8,d = u2a1, a7,d = u3a1,

where a1 is an arbitrary, real quantity which is fixed by the
energy unit. Furthermore, u is real and is determined by the

parameters entering in Ĥ through Eqs. �23� and �24�. Due to
the almost localized nature of the f electrons their nearest-
neighbor hopping amplitude can be expected to be much
smaller than that of the d electrons. Indeed, for z�
t1

f / t1
d


�1/2 the ground-state energy is given by

Eg

UN	

= − 1 + �1 − 2

t1

f 


t1

d

	�1 +

�1 − �1 − 4y2�2

4y2 	3

, �25�

where u= �1−�1−4y2� / �2y�, and y= 
t2
d / t1

d
� �0,1 /2�
holds. We see that 
�loc� ceases to be the ground state for
y= 
t2

d / t1
d
�1/2=yc. This corresponds to rather strong

next-nearest-neighbor hopping of d electrons. Apparently, at
yc=1/2 a different—most probably itinerant—phase be-
comes stable. At yc the ground-state energy Eg�y� has a
finite value, but its derivative diverges due to �u /�y= +�
�see Fig. 2�. Since the size of the hopping element
may be tuned by pressure, the infinite slope of Eg at y=yc
is expected to correspond to an anomaly in the volume,
or the compressibility, at a critical pressure Pc. Such a
feature is indeed observed in some heavy-fermion
materials.30

2. Solutions for noncubic lattices

Similar results may be deduced for other lattice structures.
In the most general case, i.e., when all hopping amplitudes tr

d

are different, the ground state energy for the localized solu-
tion becomes Eg /N	=−U+ �1−2
tx1

f 
 / 
tx1

d 
��n=1
8 
an,d
2. When

at least one of the terms 
an,d
2 �see Eq. �C2� in Appendix C�
is mathematically no longer defined the localized solution

becomes unstable. Except for accidental cancellations in the
ground-state energy an infinite slope of Eg as a function of
the hopping amplitudes is also found in this more general
case �see Appendix C�.

IV. EXACT ITINERANT GROUND STATES

The localized ground state discussed above has exactly
three electrons per site. In general, however, the intersite
hopping and hybridization will lead to a variable number of
electrons on each site. In that case the ground state 
�g�, Eq.
�11�, becomes conducting. We will now describe solutions of
this kind.

A. Solution for an,bÅ0 for all n ,b

To solve the matching conditions �8� for the case where
an,b�0 for all n ,b, we define

pn =
an,d

*

an,f
* , n = 1,2,3,4, �26a�

pn� =
an�,d

an�,f
, n� = 5,6,7,8, �26b�

and consider again Vr
d,f =Vr

f ,d=Vr. Equation �26b� is seen
to contain coefficients an,b instead of an,b

* since Eq. �21�
holds as well. An itinerant solution is obtained by choosing
pn= p=−p*, i.e., imaginary p. For this choice Eq. �8�
leads to

tr1

f =
tr1

d


p
2
, tr2

f = −
tr2

d


p
2
, Vr2

= ptr2

f , Vr1
= 0, �27�

where r1=x1 ,x2 ,x2±x1, r2=x3 ,x3±x2 ,x3±x1 ,x3±x2±x1,
and Vr1

=0 follows from Vr1
=−Vr1

. As discussed earlier,
imaginary p imply imaginary Vr. The local parameters U and
V0 become

U + Ef =

p
2 − 1


p
2 �
n=1

8


an,d
2, p*V0 = �
n=5

8


an,d
2 − �
n=1

4


an,d
2.

�28�

The remaining relations following from Eq. �8� are

− tx1

d = a1,d
* a2,d + a8,d

* a7,d + a4,d
* a3,d + a5,d

* a6,d,

− tx2

d = a1,d
* a4,d + a6,d

* a7,d + a2,d
* a3,d + a5,d

* a8,d,

− tx3

d = a1,d
* a5,d + a3,d

* a7,d + a2,d
* a6,d + a4,d

* a8,d,

− tx2+x1

d = a1,d
* a3,d + a5,d

* a7,d, − tx2−x1

d = a2,d
* a4,d + a6,d

* a8,d,

− tx3+x1

d = a1,d
* a6,d + a4,d

* a7,d, − tx3−x1

d = a2,d
* a5,d + a3,d

* a8,d,

− tx3+x2

d = a1,d
* a8,d + a2,d

* a7,d, − tx3−x2

d = a4,d
* a5,d + a3,d

* a6,d,

FIG. 2. Ground-state energy per lattice site, Eq. �25�, in units of
U as a function of y= 
t2

d / t1
d
 for the localized solution in a simple

cubic crystal for 
t1
f / t1

d
=0.01. As seen from the plot, Eg /N	 is finite
at yc=1/2 but has infinite slope.
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− tx3+x2+x1

d = a1,d
* a7,d, − tx3+x2−x1

d = a2,d
* a8,d,

− tx3−x2+x1

d = a4,d
* a6,d, − tx3−x2−x1

d = a3,d
* a5,d. �29�

Furthermore, Vr1
=0 implies

a1,d
* a2,d + a4,d

* a3,d = a5,d
* a6,d + a8,d

* a7,d, a1,d
* a3,d = a5,d

* a7,d,

a1,d
* a4,d + a2,d

* a3,d = a6,d
* a7,d + a5,d

* a8,d, a2,d
* a4,d = a6,d

* a8,d.

�30�

From Eqs. �29� and �30� it follows that

a1,d
* = a1

*, a2,d
* = ua1

*, a3,d
* = u2a1

*, a4,d
* = ua1

*,

a5,d
* = ua1

*, a6,d
* = u2a1

*, a7,d = ua1, a8,d = a1, �31�

where u is real, 
u
�1, V0=0, and �n=1
8 
an,d
2=2
a1
2�1

+u2�2. These relations can only be satisfied for anisotropic
hopping and hybridization amplitudes, e.g., for vanishing hy-
bridization in the basal �x ,y� plane. Namely, Eqs. �29�–�31�
yield 
u
=�
tx3−x2

d / tx3+x2

d 
 and 
tx�

b 
= 
tx��

b 
. The anisotropy in

the hopping amplitudes is seen to start at the level of next-
nearest neighbors. The stability region of this phase is pre-
sented in Fig. 3.

B. Exact itinerant ground state of the conventional PAM

The solutions obtained so far, namely, Eqs. �21�–�25� and
�27�–�31�, require the f electrons to be itinerant, i.e., tr

f �0.
We will now show that exact itinerant ground states can even
be constructed for the conventional PAM, i.e., for tr

f =0. This
requires nonzero d-electron hopping up to next-nearest
neighbors together with local and nearest-neighbor hybrid-
izations.

Such a solution can be constructed, for example, for
nonzero coefficients a1,f ,a1,d ,a2,d ,a4,d ,a5,d, with the remain-
ing coefficients an,b=0. This is realized in a tilted unit cell
�see Fig. 4� where the distances between lattice sites with
indices �n=1,n=3�, �n=1,n=6�, �n=1,n=8� and corre-
sponding hopping elements �tx2+x1

d , tx3+x1

d , tx3+x2

d � are consider-
ably larger than the distances between lattice sites with indi-
ces �n=2,n=4�, �n=2,n=5�, �n=4,n=5� and hopping
elements �tx2−x1

d , tx3−x1

d , tx3−x2

d �. For this reason the former hop-
ping elements are neglected �i.e., put to zero�. In this case

Eq. �8� reduces to the following 11 equations:

tx1

d = − a1,d
* a2,d, tx2

d = − a1,d
* a4,d, tx3

d = − a1,d
* a5,d,

tx2−x1

d = − a2,d
* a4,d, tx3−x1

d = − a2,d
* a5,d, tx3−x2

d = − a4,d
* a5,d,

Vx1

f ,d = − a1,f
* a2,d, Vx2

f ,d = − a1,f
* a4,d, Vx3

f ,d = − a1,f
* a5,d,

V0 = − a1,d
* a1,f, U + Ef = Kd − 
a1,f
2, �32�

where Kd= 
a1,d
2+ 
a2,d
2+ 
a4,d
2+ 
a5,d
2, and all other ampli-
tudes are identically zero.

Considering only the simplest case, i.e., t1
d= tx�

d , V1=Vx�

f ,d,
�=1,2 ,3, and t2

d= tx�−x��

d , ����, with real hopping

amplitudes,31 the corresponding stability region corresponds
to the surface in parameter space �see Fig. 5� described by

U + Ef


t1
d


= x +
1

x
�1 − y2� , �33�

where x= 
t2
d
 / 
t1

d
 and y= 
V1
 / 
t1
d
. Further properties of

the solution are discussed in Refs. 31 and 32. The fact that
an,d

* = pan,f
* with p= p* does not hold for all n=1,2 , . . . ,8,

implies a variable number of electrons at each site, i.e., an
itinerant ground state.

FIG. 3. Surface in parameter space representing the stability
region of the conducting ground state discussed in Sec. IV A.

FIG. 4. Tilted unit cell located at site i discussed in Sec. IV B.
Number represent the intracell numbering of lattice sites. Only
those bonds are presented along which hopping of d electrons
occurs.

FIG. 5. �Color online� Surface in parameter space representing
the stability region of the itinerant solution derived in the case of
the conventional PAM, Eq. �33�. For 
t2

d / t1
d
→0, the surface asymp-

totically approaches the (
V1 / t1
d
 , �U+Ef� / 
t1

d
) plane.
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C. Diagonalization of the Hamiltonian

To describe properties of the itinerant state, a k represen-
tation is more suitable. This can be introduced without re-
striction on the an,b coefficients. Therefore the two conduct-
ing solutions presented in Secs. IV A and IV B can be treated
simultaneously.

Denoting the Fourier transforms of ÂIi,�
† by Âk�

†

=�b=d,fak,b
* b̂k�

† , with

ak,b
* = a1,b

* + a2,b
* eikx1 + a3,b

* eik�x1+x2� + a4,b
* eikx2 + a5,b

* eikx3

+ a6,b
* eik�x1+x3� + a7,b

* eik�x1+x2+x3� + a8,b
* eik�x2+x3�, �34�

one may define new canonical Fermi operators describing

composite fermions Ĉ�,k�, �=1,2, �Ĉ�,k� , Ĉ��,k���
† �

=��,���k,k���,��, �Ĉ�,k� , Ĉ��,k����=0. Here32,33

Ĉ1,k� = �RkÂk� = �Rk�ak,dd̂k� + ak,f f̂k�� ,
�35�

Ĉ2,k� = �Rk�ak,f
* d̂k� − ak,d

* f̂k�� ,

where Rk
−1=�b=d,f
ak,b
2. Then the Hamiltonian becomes34

Ĥ = Ĥg + UP̂ − UN	,
�36�

Ĥg = �
k,�

��Kd − Rk
−1�Ĉ1,k�

† Ĉ1,k� + KdĈ2,k�
† Ĉ2,k�� .

In the ground state where P̂
�g�=0 the Hamiltonian Ĥ re-

duces to Ĥg. Hence the composite fermion operators intro-

duced above indeed diagonalize Ĥ. There are two bands, the
lower one having a dispersion �1,k=Kd−Rk

−1, while the upper
one is dispersionless, i.e., flat, since �2,k=Kd=const. The
lower �upper� diagonalized band contains fermions created

by Ĉ1,k�
† �Ĉ2,k�

† �, respectively. Since the total band filling is
3 /4 the lower band is completely filled, while the upper band
is half filled. Thus the Fermi energy is given by EF=Kd.
Band structures containing a partially filled flat band around
EF have indeed been observed experimentally.35–37

D. Conductivity of the itinerant state

The ground-state expectation value of Ĥitin, the itinerant

part of Ĥ, is obtained as

Ĥitin� = − �
k

Kd
ak,d
2 + Kf
ak,f
2


ak,d
2 + 
ak,f
2
� 0. �37�

This is in contrast to the localized case where Ĥitin�=0.38

Since Ĥitin�r���0 the charge sum rule �B3� implies
�0

�d� Re ��,�����0, i.e., the �dynamic� conductivity is in
general nonzero. However, the sum rule does not allow
us to draw conclusions about the dc conductivity ��0�.
This becomes possible if we calculate the chemical potential
of the system as a function of the particle number. To this
end we observe that in the case of a variable number of
particles per site the itinerant ground state is defined at and

above 3/4 filling, such that 
�g� in Eq. �11� can be general-
ized to fillings beyond 3/4 via Eq. �12�. Using Eq. �7�
this allows one to calculate the energy Eg for different
particle numbers. In particular, one finds +=Eg�N+2�
−Eg�N+1�=Kd, −=Eg�N+1�−Eg�N�=Kd, i.e., +−−=0.
Therefore, the described itinerant solutions are indeed
conducting.39

E. Magnetic properties

Using k-space notation the unnormalized ground state
�11� can be written as40


�g� = ��
k

N	

Âk↑
† Âk↓

† 	��
i

N	 ��
k

N	

eiki�i,↑ f̂k↑
† + i,↓ f̂k↓

† �	�
0� ,

�38�

where the sum and product over k extend over the first Bril-
louin zone, and the set �i,�� is arbitrary. Using Eq. �38� we
will now calculate ground-state expectation values of the
spin for different sets of �i,��.29

1. Maximum total spin

As in the localized case i,�=� corresponds to maxi-

mum total spin. Defining F̂k,b
† = �↑b̂k↑

† +↓b̂k↓
† � and employ-

ing �F̂k,b
† �2=0 the product over sites i in Eq. �38� may be

written as �i
N	��k

N	eikiF̂k,f
† �=Z�k

N	F̂k,f
† , where Z is defined in

Ref. 40. Then the normalized ground state becomes


�g� = �
k

N	 ak,d
* d̂k↑

† d̂k↓
† F̂k,f

† + ak,f
* f̂k↓

† f̂k↑
† F̂k,d

†

��
↑
2 + 
↓
2��
ak,d
2 + 
ak,f
2�

0� . �39�

The spin expectation value then follows as

2Ŝ�
N	

= x
↓↑

* + ↑↓
*


↑
2 + 
↓
2
+ y

i�↑↓
* − ↓↑

*�

↑
2 + 
↓
2

+ z

↑
2 − 
↓
2

�
↑
2 + 
↓
2�
,

�40�

resulting in 
Ŝ� /N	
2=1/4, and Ŝ2�= �N	 /2��N	 /2+1�.
Thus we recover Eq. �17�, the results for the localized solu-

tion. The maximum total spin is again given by �Ŝ2� /N	

=1/2 in the thermodynamic limit.25

2. Minimum total spin

To determine the minimum spin value we proceed as
in the localized case, i.e., divide the system in two sublattices
D↑ and D↓ containing both N	 /2 lattice sites, such that for
all in�D↑ and jn�D↓ we have jn= in+R, where R is a fixed
Bravais vector.41 Choosing i,�=�, i,−�=0 for D� in Eq.
�38� the unnormalized ground state becomes


�g� = ��
k

N	

Âk↑
† Âk↓

† 	� �
i�D1

N	/2 ��
k

N	

eiki f̂k↑
† 	�

�� �
j�D2

N	/2 ��
k

N	

eikj f̂k↓
† 	�
0� . �41�

Details of the calculation of ground-state expectation values
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in terms of Eq. �41� are presented in Appendix D. Based on

Eq. �D3� one finds Ŝ�=0, and using Eq. �D4�, �Ŝ2� /N	

��3/ �2�N	�. As a consequence, this itinerant ground state
has zero total spin in the thermodynamic limit.

Between the two limiting cases of the total spin discussed
above all values of S may exist, depending on the choice of
the set �i,��. The statement regarding the degeneracy of the
ground state presented below Eq. �18� holds in the itinerant
case as well.

F. Momentum distribution function

To calculate ground-state expectation values of

k-dependent operators involving Ĉ�,k� operators, Eq. �35�,
we need to express 
�g�, Eq. �38�, in terms of Ĉ�,k,�

† , too. For
the unnormalized ground state one finds


�g� = ��
k

N	

Ĉ1,k↑
† Ĉ1,k↓

† 	
���

i

N	 ��
k

N	

Xkeiki�i,↑Ĉ2,k↑
† + i,↓Ĉ2,k↓

† �	�
0� ,

�42�

where �i,�� is arbitrary, and Xk=−ak,d
�Rk; in the following

we consider Xk�0 for all k.42 From Eq. �42� it follows
that

Ĉ1,k�
† Ĉ1,k���
�g� = �k,k���,��
�g�, Ĉ1,k�

† Ĉ2,k���
�g� = 0.

�43�

Details of the calculation of ground-state expectation values

of Ĉ2,k�
† Ĉ2,k� operators are presented in Appendix E. Using

Eqs. �43� and �E8�, one finds in particular

Ĉ�,k�
† Ĉ�,k�� = �1,� +

1

2
�2,� �44�

for all k. This expresses the fact that the lower band ��=1� is
completely filled, while the upper band ��=2� is flat and half
filled.

Employing Eq. �44� the momentum distribution of
b=d , f electrons is then obtained as33

nk�
b = b̂k�

† b̂k�� =
1

2
+

1

2
Rk
ak,b
2, �45�

which implies nk�=�b=d,fnk�
b =3/2. Since the coefficients

Rk
ak,b
2= 
ak,b
2 / �
ak,d
2+ 
ak,f
2� are regular functions of k,
this is also the case for nk,�

b and nk,� �see Fig. 6�.43 Conse-
quently, the momentum distributions of the electrons in the
interacting ground state have no discontinuities. Since the
ground state is nonmagnetic and metallic, the system is
therefore a non-Fermi-liquid. This is a consequence of the
macroscopic degeneracy of the electrons in the upper band.
Due to the flatness of the upper half-filled band all k states
are equivalent. Hence, even if a Fermi energy EF=Kd exists
the Fermi surface, and the Fermi momentum are not defined.
Consequently, Luttinger’s theorem44 does not apply. Non-

Fermi-liquid properties connected to a flat band have also
been observed in other investigations.45–47

G. Correlation functions

To characterize the itinerant ground states further we now
calculate correlation functions of the interacting systems in
D=3. This is made possible by the explicit form of the exact
ground states.

1. Density-density correlation function

Using Eq. �43� the density-density correlation function

�n,n�r� =
1

N	
�

i
�n̂in̂i+r� − n̂i�n̂i+r�� , �46�

where n̂i=���b=d,fn̂i,�
b , may be written as

�n,n�r� =
1

N	
2 �

�,��
�

k1,k2,k3

ei�k1−k2�r�Rk1
Rk2

Rk3
Rk4

��ak3,d
* ak4,d

+ ak3,f
* ak4,f��ak1,d

* ak2,d + ak1,f
* ak2,f�

��Ĉ2,k3��
† Ĉ2,k4��Ĉ2,k1�

† Ĉ2,k2�� − Ĉ2,k3��
† Ĉ2,k4���

�Ĉ2,k1�
† Ĉ2,k2��� + �ak3,dak4,f − ak3,fak4,d��ak1,f

* ak2,d
*

− ak1,d
* ak2,f

* �Ĉ1,k3��
† Ĉ2,k4��Ĉ2,k1�

† Ĉ1,k2��� , �47�

where k4=k3+k1−k2. Employing Eqs. �E6� and �E12� in the
first term and Eqs. �43� and �E6� in the second term of Eq.
�47� one finds

FIG. 6. Momentum distribution functions nk,�
d ,nk,�

f for the con-
ducting solution discussed in Sec. IV B, for 
t1

d
 / 
t2
d
=5.0, 
V1
 / 
t1

d

=0.5, t1

d�0, and k2=k3=0, where k�=kx�. The plot presents the
behavior in the first Brillouin zone for k1� �−� ,��. For other k
directions a similar behavior is found.
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�
�,��

�Ĉ2,k3��
† Ĉ2,k4��Ĉ2,k1�

† Ĉ2,k2�� − Ĉ2,k3��
† Ĉ2,k4���

�Ĉ2,k1�
† Ĉ2,k2���

= �k1,k4
�k2,k3

−
1

N	

Xk4�k2

Xk3�k1

Xk2

Xk1

�k4,k3+k1−k2
,

�
�,��

Ĉ1,k3��
† Ĉ2,k4��Ĉ2,k1�

† Ĉ1,k2�� = �k4,k1
�k3,k2

. �48�

Then the density-density correlation function becomes

�n,n�r� = �r,0 −
1

N	
3 �

k1,k2,k3,k4

ei�k1−k2�r
ak4�k2,dak2,d

ak3�k1,dak1,d

�
�ak3,d

* ak4,d + ak3,f
* ak4,f��ak1,d

* ak2,d + ak1,f
* ak2,f�

�
ak2,d
2 + 
ak2,f
2��
ak4,d
2 + 
ak4,f
2�

��k4,k3+k1−k2
. �49�

In the thermodynamic limit the contributions from k4=k2
and k3=k1 in the second term have zero measure. Hence all
k sums can be calculated without restriction. �n,n�r� is seen
to vanish for all r whenever the k dependence of the ak,b
coefficients is negligible �for example in the case 
t1

d / t2
d
�1

for the solution from Sec. IV B�. It also vanishes in the limit

r
→�, where the k→0 limit of the coefficients ak,b gives
the dominant contribution to Eq. �49�; this behavior is indeed
seen in Fig. 7.

2. Spin-spin correlation function

Similarly, the spin-spin correlation function

�S,S�r� =
1

N	
�

i
�ŜiŜi+r� − Ŝi�Ŝi+r�� �50a�

=�Sz,Sz
�r� + �S�,S�

�r� �50b�

is given by

�Sz,Sz
�r� =

1

N	
�

i
�Ŝi

zŜi+r
z � − Ŝi

z�Ŝi+r
z �� �51a�

=
1

4N	
2 �

�
�

k1,¯,k4

ei�k1−k2�r�Rk1
Rk2

Rk3
Rk4

��ak3,d
* ak4,d

+ ak3,f
* ak4,f��ak1,d

* ak2,d + ak1,f
* ak2,f�

���Ĉ2,k3�
† Ĉ2,k4�Ĉ2,k1�

† Ĉ2,k2�� − Ĉ2,k3�
† Ĉ2,k4��

�Ĉ2,k1�
† Ĉ2,k2��� − �Ĉ2,k3�

† Ĉ2,k4�Ĉ2,k1−�
† Ĉ2,k2−��

− Ĉ2,k3�
† Ĉ2,k4��Ĉ2,k1−�

† Ĉ2,k2−���� + �ak3,dak4,f − ak3,fak4,d�

��ak1,f
* ak2,d

* − ak1,d
* ak2,f

* �

�Ĉ1,k3�
† Ĉ2,k4�Ĉ2,k1�

† Ĉ1,k2����k4,k1−k2+k3
, �51b�

�S�,S�
�r� =

1

N	
�

i
�Ŝi

xŜi+r
x + Ŝi

yŜi+r
y � − �Ŝi

x�Ŝi+r
x � + Ŝi

y�Ŝi+r
y ���

�52a�

=
1

2N	
2 �

�
�

k1,¯,k4

ei�k1−k2�r�Rk1
Rk2

Rk3
Rk4

���ak3,d
* ak4,d + ak3,f

* ak4,f��ak1,d
* ak2,d + ak1,f

* ak2,f�

��Ĉ2,k3�
† Ĉ2,k4−�Ĉ2,k1−�

† Ĉ2,k2�� − Ĉ2,k3�
† Ĉ2,k4−��

�Ĉ2,k1−�
† Ĉ2,k2��� + �ak3,dak4,f − ak3,fak4,d�

��ak1,f
* ak2,d

* − ak1,d
* ak2,f

* �

�Ĉ1,k3�
† Ĉ2,k4−�Ĉ2,k1−�

† Ĉ1,k2����k4,k1−k2+k3
. �52b�

Thus one finds �Sz,Sz
�r�=�r,0 /4 and �S�,S�

�r�=�r,0 /2 in
the thermodynamic limit. Consequently, the spins are uncor-
related at distances 
r
�0. This is a result of the macroscopic
spin degeneracy of the ground state.

V. ALTERNATIVE TRANSFORMATIONS OF THE
HAMILTONIAN

A. Generalized cell operators

The transformation of the PAM Hamiltonian into positive
semidefinite form in terms of composite operators �the unit

cell operators ÂIi,�
in Sec. II B 2 is relatively independent of

the form of Â. Instead of defining linear combinations of
fermionic operators inside a unit cell of the Bravais lattice
one may also define this superposition on an arbitrary sub-
structure of the underlying lattice, e.g., a cell larger than a
unit cell �for example, see Fig. 8�. This leads to more general
cell operators which may then be employed to transform the
Hamiltonian into a form similar to Eq. �7�. The correspond-
ing matching conditions are similar to Eq. �8� but are now
satisfied in a different region of parameter space. In this way

FIG. 7. Density-density correlation function for 
t1
d / t2

d
=4,

V1 / t1

d
=0.25, t1
d�0 for the itinerant case obtained from Eq. �49� in

the thermodynamic limit. The nine-dimensional integration was
performed by a Monte Carlo method using 69 points. The distance
r was taken in the �=1 direction, and is expressed in units of the
lattice constant a.
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it is possible to construct and investigate various regions of
parameter space.

Below we present a different transformation of the PAM
Hamiltonian based on cell operators with octahedral shape,
as shown in Fig. 8. Thereby it is possible to make direct
contact with the conventional PAM.48 This clearly shows that
a transformation of the PAM Hamiltonian into positive
semidefinite form is not linked to finite f-electron hopping
amplitudes in the PAM as one might have suspected from the
steps performed in Sec. II B. It also shows that the conven-
tional PAM and the generalized version with extended hop-
ping and hybridization amplitudes can have ground states
with quite similar properties. This emphasizes the fact that
the physical properties of an interacting electronic system
need not depend on the precise form of the noninteracting
bands.

We consider an octahedral cell Bi at each lattice site i.
The seven sites within Bi are denoted by rBi

= i+r�1,�2,�3
,

where r�1,�2,�3
=�1�1− 
�2
��1− 
�3
�x1+�2�1− 
�1
��1

− 
�3
�x2+�3�1− 
�1
��1− 
�2
�x3, ��=−1,0 ,1. Here x� are
the primitive vectors of the unit cell of the lattice. As seen
from Fig. 8, the seven sites rBi

can be numbered by
the indices n�1,�2,�3

= �1− 
�2
��1− 
�3
���1
�1
+2�+ �1− 
�1
�
��1− 
�3
���2
�2
+ 
�2
+2�+ �1− 
�1
��1− 
�2
���3
�3
+4
�3

+2� without reference to Bi. The separation vector r between
a site i and its neighbors in the cell Bi can take 11 distinct
values �x� ,x�±x�� ,2x� ,� ,��=1,2 ,3 ,����� over which the
summation in Eqs. �2� and �3� must be performed. Instead of
Eq. �4� the cell operator is now defined as

B̂Bi,�
† = a6f

* f̂ i,�
† + �

n�1,�2,�3
=1

7

an,d
* d̂i+r�1,�2,�3

,�
† , �53�

where n=n�1,�2,�3
, and the seven vectors r�1,�2,�3

�rn�1,�2,�3

�rn in the sum are, in increasing order of the index
n, −x1 ,−x2 ,x1 ,x2 ,−x3 ,0 ,x3, �see Fig. 8.�. We note that
an,f �0 only on the central site �e.g., n=6� of the cell Bi.

Consequently the product B̂Bi,�
† B̂Bi�

does not introduce

f-electron hopping terms into the Hamiltonian, implying that
the decomposition discussed here directly applies to the con-
ventional PAM. In addition, the Hamiltonian contains only
on-site and nearest-neighbor hybridization amplitudes, and
d-electron hopping occurs between nearest- and next-
nearest-neighbor sites.

Instead of Eq. �7� the transformed Hamiltonian then be-
comes

Ĥ = �
i,�

B̂Bi,�
B̂Bi,�

† + UP̂ + Eg,b, �54�

where Eg,b=KN̂−UN	−2N	�
a6,f
2+K�, K=�n=1
7 
an,d
2. Fur-

thermore, the matching conditions from Eq. �8� transform
into the following nonlinear system of 19 coupled complex
algebraic equations:

− tx1

d = a6,d
* a3,d + a1,d

* a6,d, − tx2

d = a6,d
* a4,d + a2,d

* a6,d,

− tx3

d = a6,d
* a7,d + a5,d

* a6,d,

− tx2+x1

d = a2,d
* a3,d + a1,d

* a4,d, − tx2−x1

d = a3,d
* a4,d + a2,d

* a1,d,

− tx3+x1

d = a5,d
* a3,d + a1,d

* a7,d,

− tx3−x1

d = a3,d
* a7,d + a5,d

* a1,d, − tx3+x2

d = a2,d
* a7,d + a5,d

* a4,d,

− tx3−x2

d = a4,d
* a7,d + a5,d

* a2,d,

− t2x1

d = a1,d
* a3,d, − t2x2

d = a2,d
* a4,d, − t2x3

d = a5,d
* a7,d,

− V0 = a6,d
* a6,f ,

− Vx1
= a1,d

* a6,f = a6,f
* a3,d, − Vx2

= a2,d
* a6,f = a6,f

* a4,d,

− Vx3
= a5,d

* a6,f = a6,f
* a7,d, �55�

where Vr
f ,d=Vr

d,f =Vr, Ef =K−U− 
a6,f
2, and an,f =0 for n�6.
The ground-state wave function valid for N�3N	 now has
the form


�g,b� = �
i=1

N	

�B̂Bi,↑
† B̂Bi,↓

† F̂i
†�V̂M

† 
0� , �56�

where, for N=3N	, V̂M
† =1 holds. Since an,d /an,f cannot

be constant for all n=1,2 , . . . ,7 �see Sec. III.� 
�g,b�
describes an itinerant ground state with properties similar
to those presented in Sec. IV. An isotropic solution is
obtained for49

a1,d =�
t2
d

2

ei�, a6,d =

V0

V1

�
t2
d

2

ei��−�V0
�,

�57�

a6,f = − V1� 2


t2
d


ei�,

where � is an arbitrary phase and �V0
is the phase31 of

the hybridization amplitude V0. Introducing the notation

FIG. 8. Octahedral cell defined at lattice site i as discussed in
Sec. V A. The �=1,2 ,3 axes are represented by arrows with broken
lines, x� are indicated by thick full line arrows, and n represents the
cell-independent notation of sites inside the octahedron.
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t= 
t2
d / t1

d
, v= 
V1 / t1
d
, this solution emerges in the parameter

region with

U + Ef


t1
d


= 3t −
2v2

t
+

1

2t cos2 �V0

. �58�

Since V0 and thereby Im�V0� is in principle arbitrary,
Eq. �58� defines an entire region in the parameter space
where the solution exists �see Fig. 9�. For Im�V0��0, or
real V0 at 
t1

d / t2
d
�6, the properties presented in Sec. IV

remain valid.50

The results presented in this section show that an itinerant
non-Fermi-liquid phase emerges also for real hybridization—
even in the conventional PAM.

B. Alternative decomposition using unit cell operators

To emphasize the flexibility of our method for construct-
ing exact ground states of the PAM we will now show

that even if unit cell operators ÂIi,�
are used, alternative

decompositions are possible which lead to qualitatively
different ground states in other regions of the parameter

space. For example, instead of Eq. �7� the Hamiltonian Ĥ
defined by Eqs. �1a�, �1c�, and �2� can also be cast into
the form

Ĥ = �
i,�

ÂIi,�
† ÂIi,�

+ U�
i

n̂i,↑n̂i,↓ + Eg�. �59�

For periodic boundary conditions the matching conditions

can then be obtained from Eq. �8� by �i� replacing Jr
b,b�

by J̄r
b,b�=−Jr

b,b�, and �ii� replacing the last two equations �for
V0 and U+Ef� by V0=�n=1

8 an,d
* an,f and Ef =Kd−Kf, with

Eg� /N=Kd.
Using the new solutions of the matching conditions for

arbitrary U�0 we will now identify new ground states of
�59� at and below quarter filling.

1. Insulating ground state at quarter filling

There exist solutions of the form an,d /an,f = p for all n,
with the additional constraint p= p*. In this case, the unit

cell operator ÂIi,�
contains only contributions of the form

f̂ i,�+ pd̂i,� for all i and �. Introducing Îi
†�i�= � f̂ i,↑

†

− �1/ p�d̂i,↑
† �+i� f̂ i,↓

† − �1/ p�d̂i,↓
† �, where i is an arbitrary site-

dependent constant, one observes that

� f̂ j,� + pd̂j,�, Îj�
† �j��� = 0, ∀ j,j�,j�,� . �60�

Since the operator Îi
†�i� acts only on site i, the operator

Î†=�i=1
N	 Îi

†�i� does not introduce f-electron double occupan-

cies. Consequently, �i,�ÂIi,�
† ÂIi,�

Î†
0�=0, U�in̂i,↑
f n̂i,↓

f Î†
0�=0,
and the ground state becomes


�g� = �
i=1

N	 �� f̂ i,↑
† −

1

p
d̂i,↑

† 	 + i� f̂ i,↓
† −

1

p
d̂i,↓

† 	�
0� . �61�

The ground state �61� has exactly one electron per site, and is
degenerate, localized, and globally nonmagnetic. One can
directly show that Re ��,��0�=0 �see Sec. III A 1�, i.e., the
state is indeed insulating.

2. Conducting ferromagnetic ground state at quarter filling

If an,d /an,f depends on n, ÂIi,�
does not anticommute with

Îi
†�i�; hence �i,�ÂIi,�

† ÂIi,�
Î†
0�=0 does not hold. In this case

one may introduce a complementary unit cell operator51

Q̂Ii,�
† = �

n��,�,��=1

8

�qn,d
* d̂i+r�,�,�,�

† + qn,f
* f̂ i+r�,�,�,�

† � = �q1,d
* d̂i,�

†

+ q2,d
* d̂i+x1,�

† + q3,d
* d̂i+x1+x2,�

† + q4,d
* d̂i+x2,�

† + ¯

+ q8,d
* d̂i+x2+x3,�

† � + �q1,f
* f̂ i,�

† + q2,f
* f̂ i+x1,�

† + q3,f
* f̂ i+x1+x2,�

†

+ q4,f
* f̂ i+x2,�

† + ¯ + q8,f
* f̂ i+x2+x3,�

† � , �62�

with the property �ÂIi,�
, Q̂Ij,��

† �=0 for all i , j and � ,��. The
numerical coefficients are given by the relations

q1,d
* = wa7,f, q2,d

* = wa8,f, q3,d
* = wa5,f, q4,d

* = wa6,f ,

q5,d
* = wa3,f, q6,d

* = wa4,f, q7,d
* = wa1,f, q8,d

* = wa2,f ,

FIG. 9. �Color online� Surfaces in parameter space above which
the conducting phase discussed in Sec. V A. is stable. �a� 
V1
 / 
t1

d

�0.5; �U+Ef� / 
t1

d
 is seen to diverge as 
t2
d
 / 
t1

d
 approaches zero. �b�

V1
 / 
t1

d
�0.5. In contrast to Fig. 5 where V1 is imaginary, V1 is real
here.
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q1,f
* = − wa7,d, q2,f

* = − wa8,d, q3,f
* = − wa5,d,

q4,f
* = − wa6,d,

q5,f
* = − wa3,f, q6,f

* = − wa4,d, q7,f
* = − wa1,d,

q8,f
* = − wa2,d, �63�

where w is an arbitrary nonzero constant. Introducing

Q̂�1,�2,. . .,�N	

† =�i=1
N	Q̂Ii,�i

† one has �i,�ÂIi,�
† ÂIi,�

Q̂�1,�2,. . .,�N	

† 
0�
=0 for arbitrary �i. If the sites i , i� are adjacent the operator

Q̂Ii,�i

† Q̂Ii�,�i�

† introduces two electrons on the common sites of

Ii and Ii�. The state Q̂�1,�2,. . .,�N	

† 
0� then provides the mini-

mum possible eigenvalue �e.g., zero� in the presence of the
Hubbard term only when �i=� for all i. Consequently, the
ground state becomes


�g� = �
i=1

N	

Q̂i�
† 
0�, � = ↑,↓ . �64�

This corresponds to a fully saturated, nondegenerate ferro-
magnetic phase, which is metallic since in Eq. �64� double

occupancies �e.g., d̂i,↑
† f̂ i,↑

† �, empty sites, and single occupan-
cies are simultaneously present.52

Ferromagnetism in the PAM at and around quarter filling
has been investigated rather extensively in the past already.
Following variational results for Kondo lattices by Fazekas
and Müller-Hartmann53 ferromagnetic phases in the PAM it-
self were found by Dorin and Schlottmann54 in the limit
U→�, and at finite U by Möller and Wölfle55 within a slave-
boson approach. Subsequently, ferromagnetic solutions of
the PAM at and near quarter filling were obtained within
various other approximation schemes.56–64 Exact results
were derived in D=1 for U=� by Yanagisawa.65

In the exact solution discussed here ferromagnetism
emerges when the lower diagonalized band of Eq. �2� be-
comes nondispersive �flat�. We note that this can happen
even if the bare bands of the Hamiltonian are dispersive.

3. Ground states below quarter filling

Exact ground states of the PAM can even be constructed
for N�N	, i.e., below quarter filling. For the two cases
discussed in Secs. V B 1 and V B 2 they have the same
form as Eqs. �64� and �61�. However, the upper limit of the
products has to be replaced by N, and the additional geo-
metrical degeneracy of the electrons needs to be taken into
account.

For n-dependent qn,d /qn,f, the ground state becomes


�g� = �
DN

�
�DN,m�

�
��m�

�DN,�DN,m�,��m��
m
� �

i�DN,m

Q̂i,�m

† 	
0�

�65�

where DN denotes an arbitrary domain �a subset of lattice
points� of the full lattice containing N�N	 lattice sites. A
given domain DN consists of disjoint subdomains �clusters�
denoted by DN,m where m enumerates the clusters in DN;

the maximum of m is denoted by Nm. Clearly one has
DN=DN,1�DN,2� ¯ �DN,Nm

, and DN,m1
�DN,m2

=0 for
m1�m2. Furthermore, �m= ±1/2 represents a fixed, but ar-
bitrary, spin index in the subdomain DN,m, and �DN,�DN,m�,��m�
are arbitrary coefficients. From a physical point of view Eq.
�65� contains disjoint, fully saturated ferromagnetic, con-
ducting clusters of arbitrary shape and size, whose spin ori-
entation is arbitrary.

For qn,d /qn,f = p= p* the ground state becomes


�g� = �
DN

�
�DN,m�

�DN,�DN,m��
m
� �

i�DN,m

�� f̂ i,↑
† −

1

p
d̂i,↑

† 	
+ i� f̂ i,↓

† −
1

p
d̂i,↓

† 	��
0� �66�

containing again clusters of arbitrary shape and size. But
now the clusters are insulating and nonmagnetic, containing
strictly one particle per site with arbitrary spin.

The parameter region corresponding to the ground-state
solutions in Sec. V B can be obtained from that derived from
the matching conditions �8� by the replacements tr

b→−tr
b,

Vr→−Vr, U→0. The results are valid for all U�0.

VI. SUMMARY

We presented details of an analytic scheme which
allows one to construct exact ground states for a general
class of three-dimensional periodic Anderson models, includ-
ing the conventional PAM, on regular Bravais lattices.
First the Hamiltonian is cast into positive semidefinite form
with the help of composite fermionic operators in combina-
tion with a set of coupled, nonlinear matching conditions
for the microscopic parameters of the Hamiltonian. Then a
nonlocal product state of these composite operators in posi-
tion space, corresponding to 3/4 filling, is constructed,
which yields exact ground states in various parts of param-
eter space.

Depending on the choice of the composite operators
and the geometry of the building blocks of the lattice on
which they are defined, the transformation of the Hamil-
tonian into positive semidefinite form can be performed in
several ways. Thereby it is possible to construct exact ground
states in different regions of the parameter space of the
model.

For real d , f hybridization amplitudes we constructed
an insulating, nonmagnetic ground state which is stable
on several different lattice structures. Its ground-state energy
was shown to diverge at the boundary of the stability region,
implying a divergence of its compressibility. Such an
anomaly is known to occur in several heavy-fermion materi-
als. Furthermore, we identified an exact metallic non-Fermi-
liquid ground state, characterized by one dispersing band
and one upper flat band, which is stable in different regions
of parameter space. This state is nonmagnetic and has
vanishing nonlocal spin-spin correlations in the thermody-
namic limit. Its density-density correlations are short ranged,
and the momentum distributions of the electrons in the
interacting ground state have no discontinuities. The stability
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regions of these ground states extend through a large region
of the parameter space, from weak to strong on-site interac-
tions U.

Exact ground states with conducting and insulating
properties, respectively, were also constructed at and
below quarter filling. In particular, a conducting, fully polar-
ized ferromagnetic state was found to be the ground state
at quarter filling. At lower fillings a ground state character-
ized by ferromagnetic clusters of arbitrary shape was
identified.

Our results show that ground states of the conventional
PAM and of generalizations with extended hopping and hy-
bridization amplitudes can have quite similar properties.

The exact ground states discussed in this paper corre-
spond to simple solutions of the coupled matching conditions
for the microscopic parameters of the Hamiltonian. In view
of their large number �e.g., 55 conditions in the case of the
unit cell operators in Sec. II B� and their nonlinearity it al-
most certain that other solutions exist which then lead to yet
other exact ground states of the three-dimensional PAM and
its extensions. In view of the great relevance of this model
for our understanding of correlated electronic systems, on the
level of both models and real materials, more detailed inves-
tigations of the matching conditions derived here will be
worthwhile. Finally it should be stressed that the concept
behind the construction of exact ground states for the PAM
in D=3 presented here is quite general, and is also applicable
to other electronic correlation models.
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APPENDIX A: TRANSFORMATION OF THE PERIODIC
ANDERSON MODEL HAMILTONIAN

In this appendix we present details of the transformation
of the PAM Hamiltonian in its original form with d and f
operators �see Eqs. �1�, �2�, and �6��

Ĥ = �
i,�

��
r

��tr
dd̂i,�

† d̂i+r,� + tr
f f̂ i,�

† f̂ i+r,�� + �Vr
dfd̂i,�

† f̂ i+r,�

+ Vr
fd f̂ i,�

† d̂i+r,�� + H.c.� + �V0d̂i,�
† f̂ i,� + H.c.�

+ �Ef + U�n̂i,�
f 	 + UP̂ − UN	, �A1�

into the form with unit cell operators, Eq. �7�,

Ĥ = − �
i,�

ÂIi,�
† ÂIi,�

+ KdN̂ + UP̂ − UN	, �A2�

and explain how the matching conditions �8� arise in this
process.

One first calculates all terms in the sum −�i,�ÂIi,�
† ÂIi,�

from Eq. �A2�. To identify the contributions generated
thereby with those defined by Eq. �A1� one needs altogether
55 matching equations. This procedure will now be illus-
trated by four typical examples. Here we refer to Fig. 10
where four neighboring unit cells Ii1

, Ii2
, Ij1

, and Ij2
—each

denoted according to the notation introduced in Sec. II B 1—
are depicted. Since the precise shape of the unit cells is un-
important here we use orthorhombic cells for simplicity.

Nearest-neighbor contributions. First we analyze a
nearest-neighbor amplitude, e.g., tj2,j5

d , which appears in the

kinetic energy of Eq. �A1� as tj2,j5

d d̂j2,�
† d̂j5,�. This term acts

along the bond �j2 , j5� represented by the horizontal, thick
dashed line in Fig. 10. In Eq. �A2� this term originates from

−�i,�ÂIi,�
† ÂIi,�

, but only for sites i= i1 , i2 , j1 , j2 in �i. To cal-

culate −�i=i1,i2,j1,j2
ÂIi,�

† ÂIi,�
one must write down the unit cell

operators ÂIi

†, Eq. �4�, corresponding to the aforementioned
four unit cells. For example, one finds

ÂIi1
,�

+ = �
b=d,f

�a1,b
* b̂i1,�

† + a2,b
* b̂i2,�

† + a3,b
* b̂i5,�

† + a4,b
* b̂i4,�

†

+ a5,b
* b̂j1,�

† + a6,b
* b̂j2,�

† + a7,b
* b̂j5,�

† + a8,b
* b̂j4,�

† � ,

ÂIi2
,�

+ = �
b=d,f

�a1,b
* b̂i2,�

† + a2,b
* b̂i3,�

† + a3,b
* b̂i6,�

† + a4,b
* b̂i5,�

†

+ a5,b
* b̂j2,�

† + a6,b
* b̂j3,�

† + a7,b
* b̂j6,�

† + a8,b
* b̂j5,�

† � .

Thereby one obtains contributions of the form

−a6,d
* a7,dd̂j2,�

† d̂j5,�, −a5,d
* a8,dd̂j2,�

† d̂j5,�, −a2,d
* a3,dd̂j2,�

† d̂j5,�, and

−a1,d
* a4,dd̂j2,�

† d̂j5,� implying tj2,j5

d =−�a1,d
* a4,d+a2,d

* a3,d

+a5,d
* a8,d+a6,d

* a7,d�. Since �i� tj2,j5

d is a specific example of the
general hopping amplitude ti,i+x2

d , �ii� all amplitudes tr
d have

the same form �i.e., tx2

d = ti,i+x2

d �, and �iii� this also holds for
the f electrons, i.e., tx2

f = ti,i+x2

f , one finds −tx2

b =a1,b
* a4,b

+a2,b
* a3,b+a5,b

* a8,b+a6,b
* a7,b, where b=d , f .

The same analysis applies to the hybridization amplitudes.

Hence, for the terms Vx2

d,fd̂i,�
† f̂ i+x2,� and Vx2

f ,d f̂ i,�
† d̂i+x2,� one finds

−Vx2

b,b�=a1,b
* a4,b�+a2,b

* a3,b�+a5,b
* a8,b�+a6,b

* a7,b�.

FIG. 10. Four neighboring unit cells in D=3. Each cell �e.g., Ii�
is donoted by one of the lattice sites at which it is located �e.g., i�;
see Sec. II B 1. For simplicity, orthorhombic unit cells are used.
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Thus we have derived the matching condition Jx2

b,b�

=−��b,b�tx2

b + �1−�b,b��Vx2

b,b�� �the third relation in Eq. �8��.
It should be noted that the sum −�i,�ÂIi,�

† ÂIi,�
also pro-

duces the Hermitian conjugates of the terms represented by
Eq. �A1�. Therefore, in addition to the result for tj2,j5

d one also
finds tj5,j2

d =−�a4,d
* a1,d+a3,d

* a2,d+a8,d
* a5,d+a7,d

* a6,d�, where

tj5,j2

d = ti,i−x2

d = t−x2

d = tx2

d*
.

Second-nearest-neighbor contributions. We now consider
a plaquette-diagonal next-nearest-neighbor term, namely,
ti2,j5

d , acting on the oblique thick dashed line in Fig. 10. Since
the bond �i2 , j5� appears only in the unit cells Ii1

and Ii2
, only

the contributions from −�iÂIi�
,�

† ÂIi�
,� in Eq. �A2� with

i= i1 , i2 give rise to ti2,j5

d d̂i2,�
† d̂j5,� in Eq. �A1�. The sum

−�i=i1,i2
ÂIi,�

† ÂIi,�
leads to the expressions −a2,d

* a7,dd̂i2,�
† d̂j5,�,

and −a1,d
* a8,dd̂i2,�

† d̂j5,�, implying ti2,j5

d =−�a1,d
* a8,d+a2,d

* a7,d�.
Since �i� ti2,j5

d is a specific example of the general hopping
amplitude ti,i+x3+x2

d , and �ii� all the amplitudes ti,i+x3+x2

d have
the same form �i.e., ti,i+x3+x2

d = tx3+x2

d � one finds −tx3+x2

d

=a1,d
* a8,d+a2,d

* a7,d. These relations also hold for the f elec-

trons. Therefore we arrive at the matching condition Jx3+x2

b,b�

=a1,b
* a8,b�+a2,b

* a7,b� �the sixth relation in Eq. �8��.
Third-nearest-neighbor contributions. The third-neighbor

contributions, located along the space diagonals of the unit
cell, are the same in every cell. For example, studying the

bond �j1 , j5� of the cell Ii1
, the product −ÂIi1

,�
† ÂIi1

,� leads to

the term −a1,d
* a7,dd̂i1,�

† d̂j5,�. Hence one finds ti1,j5

d

= ti,i+x3+x2+x1

d = tx3+x2+x1

d =−a1,d
* a7,d and, consequently, Jx3+x2+x1

b,b�

=a1,d
* a7,d �the tenth relation in Eq. �8��.
Single-site contributions. Since any site is common to

eight unit cells, single-site contributions require the consid-
eration of eight neighboring unit cells. For example, the term

V0�i,�d̂i,�
† f̂ î,� is obtained from −�i,�ÂIi,�

† ÂIi,�
as

−��n=1
8 an,d

* an,f��i,�d̂i,�
† f̂ i,�, implying −V0=�n=1

8 an,d
* an,f. In the

same way we obtain the coefficient of −�i,�b̂i,�
† b̂i,� as

�n=1
8 
an,b
2=Kb. Therefore the terms −�i,�ÂIi,�

† ÂIi,�
+KdN̂ in

Eq. �A2� yield −�KdN̂d+KfN̂f�+Kd�N̂d+ N̂f�= �Kd−Kf�N̂f,

where N̂= N̂d+ N̂f. Taking into account the term �U+Ef�N̂f

in Eq. �A1� one obtains U+Ef =Kd−Kf �last relation in
Eq. �8��.

APPENDIX B: THE CURRENT OPERATOR

In this appendix we derive the current operator as well as
the charge-conductivity sum rule for a general form of the
PAM.

The charge-density operator at site i is given by �̂�i�
=e���d̂i,�

† d̂i,�+ f̂ i,�
† f̂ i,��, with e as the electron charge. The

current operator ĵ is defined as28 ĵ=−�i /���q̂ , Ĥ�, where V is
the volume of the system, q̂= �1/V��ii�̂�i� is the charge po-

larization operator, and Ĥ is the Hamiltonian. With Ĥ from

Eq. �A1� the current operator of the PAM is found as

ĵ =
ie

�V
�

i
�

r
�
�

�
b,b�=d,f

�Jr
b,b�*

b̂i+r,��† b̂i,� − Jr
b,b�b̂i,�

† b̂i+r,�� �r ,

�B1�

where Jr
b,b� is defined in Eq. �8�, and r is restricted to the

values presented in Sec. II B 1. We note that only the itiner-

ant part of the Hamiltonian, i.e., Ĥitin=�rĤitin�r�= Ĥ− ĤU

−�i,���V0d̂i,�
† f̂ i,�+H.c.�+Efn̂i,�

f �, where

Ĥitin�r� = �
i,�

��tr
dd̂i,�

† d̂i+r,� + tr
f f̂ i,�

† f̂ i+r,��

+ �Vr
dfd̂i,�

† f̂ i+r,� + Vr
fd f̂ i,�

† d̂i+r,�� + H.c.� , �B2�

contributes to Eq. �B1�.
Starting from the current operator in Eq. �B1�, the Kubo

formula for the charge conductivity at zero temperatures be-
comes ��,����= iV�0

�dt e−i�t�q̂��t� , ĵ���. The sum rule for the
charge conductivity then has the form28 �0

�d� Re ��,����=

−�i�V /2��q̂� , ĵ���, where q̂�= q̂ ·x� / 
x�
 and ĵ�= ĵ ·x� / 
x�
 rep-

resent the � components of q̂ and ĵ, respectively; here x� are
the primitive vectors of the unit cell. For the Hamiltonian
under investigation one finds

�
0

�

d� Re��,���� = −
�e2

2�V
�

r

�r · x��2


x�
2
Ĥitin�r�� . �B3�

APPENDIX C: LOCALIZED SOLUTION FOR THE
NONCUBIC CASE

In this appendix the matching conditions �23� from
Sec. III B are solved for localized ground states in the
case of noncubic systems. We start from the observation
that the coefficients an,d with n�5 can be expressed by
the unit cell diagonal hopping amplitudes and an,d with
n�5 as a5,d=−tx3−x2−x1

d /a3,d
* , a6,d=−tx3−x2+x1

d /a4,d
* , a7,d=

−tx3+x2+x1

d /a1,d
* , a8,d=−tx3+x2−x1

d /a2,d
* . With these relations and

using the notations

�1 �
4tx3+x2+x1

d tx3−x2−x1

d

tx2+x1

d 2 , �2 �
4tx3+x2+x1

d tx3+x2−x1

d

tx3+x2

d 2 ,

�C1�

�3 �
4tx3+x2+x1

d tx3−x2+x1

d

tx3+x1

d 2 ,

�4 �
4tx3−x2−x1

d tx3+x2−x1

d

tx3−x1

d 2 , �5 �
4tx3−x2−x1

d tx3−x2+x1

d

tx3−x2

d 2 ,

�6 �
4tx3−x2+x1

d tx3+x2−x1

d

tx2−x1

d 2 ,

Eq. �23� leads to
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a1,d
2 = −
tx2+x1

d tx3+x2

d

2tx3−x1

d �4

F��1�F��2�F��4� ,


a2,d
2 = −
tx2−x1

d tx3+x2

d �2

2tx3+x1

d

F��3�F��6�
�3F��2�

,

�C2�


a3,d
2 = −
tx2+x1

d tx3−x1

d

2tx3+x2

d

�4F��1�
F��2�F��4�

,


a4,d
2 = −
tx2−x1

d tx3+x1

d �3

2tx3+x2

d

F��2�F��6�
�2F��3�

,

where F�x�=1±�1−x. The function required for the expres-
sion of Eg becomes

�
n=1

8


an,d
2 = �
a1,d
2 +
td

x3+x2+x1

2


a1,d
2
	 + �
a2,d
2 +

td
x3+x2−x1

2


a2,d
2
	

+ �
a3,d
2 +
td

x3−x2−x1

2


a3,d
2
	 + �
a4,d
2 +

td
x3−x2+x1

2


a4,d
2
	 .

�C3�

For the localized solution to be stable the quantities 
an,d
2 in
Eq. �C2�, and hence the function F��i�, Eq. �C3�, need to be
real. When F��i� becomes complex the localized solution
becomes unstable. At these points the derivative �F�x� /�x
diverges. Except for accidental cancellations in Eq. �C3�, this
implies an infinite slope of Eg as a function of hopping am-
plitudes.

APPENDIX D: SECTOR OF MINIMAL SPIN OF THE
ITINERANT SOLUTION

Here we present details of the calculation of spin expec-
tation values in the itinerant case for minimum total spin �see
Sec. IV E 2�.

In Eq. �41� the terms

� �
i�D�

N	/2 ��
k

N	

eiki f̂k�
† 	� = �

�ki�
��ki�,�

F̂f ,�ki�,�
† , ��ki�,�

= �
P�ki�

�− 1�p̄ei�i1ki1
+¯+iN	/2kiN	/2�

�D1�

appear where F̂f ,�ki�,�
† = � f̂ki1

�
† f̂ki2

�
†

¯ f̂kiN	/2
�

† �. Here the sum

over �ki� extends over all sets of momentum with N	 /2 ele-
ments chosen from the first Brillouin zone, the sum �P�ki�

goes over all permutations P�ki�
of the momenta in each set

�ki�= �k1 , . . . ,kN	/2�, and p̄ represents the parity of P�ki�
.

Since for in,��D� we have in,↓= in,↑+R, one finds ��ki�,↓
=ei��ki���ki�,↑, where ��ki�

=R�k��ki�
k. Thus, Eq. �41� be-

comes


�g� = �
�ki�

�
�kj�

��ki�,�kj�

v�ki�,�kj�

� ,

�D2�


v�ki�,�kj�
� = ��

k

N	

Âk,↑
† Âk,↓

† 	F̂f ,�ki�,↑
† F̂f ,�ki�,↓

† 
0� ,

where ��ki�,�kj�
=��ki�,↑��ki�,↓, 
��ki�,�kj�


= 
��kj�,�ki�

, and


v�ki�,�kj�
� are orthogonal states. Using Eq. �D2� one finds29

Ŝx� = ��
k

Ŝk
x� = 0,

�D3�

Ŝy� = ��
k

Ŝk
y� = 0, Ŝz� =��

k

N	

Ŝk
z� = 0, Ŝ� = 0.

To calculate expectation values of the square of the spin we
use normalized wave functions 
w�kj�,�ki�

�
= 
v�kj�,�ki�

� / �v�kj�,�ki�

v�kj�,�ki�

��1/2, in terms of which the
ground state can be written as 
�g�
=��ki�

��kj�
��ki�,�kj�

� 
w�ki�,�kj�
�, where ��ki�,�kj�

� are new numeri-
cal coefficients. Thereby one finds

�Ŝz�2� =
1

4
�Ŝ+Ŝ− + Ŝ−Ŝ+��

=
��ki� ��kj�


��ki�,�kj�
� 
2�N	 − d�ki�,�kj�

�

4��ki� ��kj�

��ki�,�kj�

� 
2
�

N	

4
,

�D4�

where d�ki�,�kj�
is the number of common elements of the sets

�ki� and �k j�.

APPENDIX E: EXPECTATION VALUES FOR THE
FLAT BAND

In this appendix we present details of the calculation of
ground state expectation values for the itinerant solution in
Sec. IV. The ground state wave vector �42� is a superposition
of states


�g,���� = ��
k

N	

Ĉ1,k↑
† Ĉ1,k↓

† 	��
n=1

N	 � 1
�N	

�
kn

N	

Xkn
eikninĈ2,kn�in

† 	�
�
0� , �E1�

where ���= ��i1
,�i2

,�i3
, . . . ,�iN	

�. By modifying the ��� sets

in Eq. �E1� one obtains 2N	 states, which obey
�g,��� 
�g,�����=Det�xi,j��Xk

*� , �Xk� ,�i ,�j���, where
xi,j��Vk

*� , �Wk� ,�i ,�j��=��i,�j�
�1/N	��k

N	Vk
*Wkeik�j−i�. We see

that for ����� ��� the states 
�g,����, and 
�g,����� are not
necessarily orthogonal.

1. The case XkÅ0

We first consider Xk�0 for all k. Introducing the states
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�g
���� = ��

k

N	

Ĉ1,k↑
† Ĉ1,k↓

† 	��
n=1

N	 � 1
�N	

�
kn

N	 1

Xkn

* eikninĈ2,kn�in

† 	�
�
0� , �E2�

one finds �g
��� 
�g,�����=Det�zi,j��i ,�j���, where zi,j��i ,�j��

=xi,j��1/Xk� , �Xk� ,�i ,�j��=��i,�i�
�i,j, such that

Det�zi,j��i ,�j���=����,����. This yields �g
��� 
�g,�����=����,����,

i.e., the set �
�g,����� is linearly independent and for N
=3N	 provides a basis for Hg �see Eq. �10��. An arbitrary
state of the form of �42� can then be written as 
�g�
=��������
�g,����, where ���� are numerical coefficients.18

Furthermore, one finds

Ĉ2,k1�1

† Ĉ2,k2�2

�g,����� = �

n=1

N	


�g,����,n
�k1�1�,�k2�2��, 
�g,����,n

�k1�1�,�k2�2�� = ��
k�

N	

Ĉ1,k�↑
† Ĉ1,k�↓

† 	
� �� 1

�N	

�
k�

N	

Xk�e
ik�i1Ĉ2,k��i1

�
† 	¯ � 1

�N	

�
k�

N	

Xk�e
ik�in−1Ĉ2,k��in−1

�
† 	� 1

�N	

Xk2
eik2inĈ2,k1�1

† ��in
� ,�2	

� � 1
�N	

�
k�

N	

Xk�e
ik�in+1Ĉ2,k��in+1

�
† 	¯ � 1

�N	

�
k�

N	

Xk�e
ik�iN	Ĉ2,k��iN	

�
† 	�
0� , �E3�

from which

�g
�����
Ĉ2,k1�1

† Ĉ2,k2�2

�g,����� = �

n=1

N	

Det�z̄i,j�n,�i��,�j���

�E4�

follows. Here, the matrix z̄i,j�n ,�i� ,�j�� is the same as
zi,j��i� ,�j��, except for the matrix elements in the nth column
which are given by z̄i,n= �1/N	�
��Xk2

/Xk1
�ei�k2in−k1i���i�,�1

��in
� ,�2

. From Eq. �E4� one finds

that �g
����
Ĉ2,k1�

† Ĉ2,k2−�
�g,����� vanishes in the thermody-
namic limit as 1 /N	. In the case of �1=�2=�, only ����
= ���� components remain in Eq. �E4�, yielding

�g
�����
Ĉ2,k1�

† Ĉ2,k2�
�g,�����

= �����,����

Xk2

Xk1

1

N	
�
n=1

N	

��,�in
� ei�k2−k1�in, �E5�

where �n=1
N	 ��,�in

� quantifies the number of � spins from ����.
Since ����,�in

� =1 for arbitrary �in
� , it follows that

�g
����
��Ĉ2,k1�

† Ĉ2,k2�
�g,�����=�k2,k1
�����,����. Using the no-

tation ¯�= �g
¯ 
�g� / �g 
�g�, one finally obtains

��
�

Ĉ2,k1�
† Ĉ2,k2�� = �k2,k1

. �E6�

The spin-dependent expectation value Ĉ2,k�
† Ĉ2,k�� may be

calculated, for example, by taking the T→0 limit of

Ĉ2,k�
† Ĉ2,k�� as

Â� = lim
T→0

Tr�Âe−�Ĥ�

Tr�e−�Ĥ�
= lim

T→0

Tr�Âe−�Ĥg�

Tr�e−�Ĥg�

=
���� �g

���
Â
�g,����

���� �g
���
�g,����

, �E7�

where Â is an arbitrary operator and Ĥg is defined in Eq.
�36�. The second equality in Eq. �E7� holds since for N	

�� excited states of Ĥ are always separated by a finite en-
ergy from the ground state and thus give only exponentially

small corrections to the contribution of Ĥg. Equation �E7�
therefore yields

Ĉ2,k1�1

† Ĉ2,k2�2
� =

1

2
�k2,k1

��2,�1
. �E8�

2. The case Xk=0

Here we consider the case ak*,d=0 for a given vector k

=k* which implies Xk* =0 �we note that the Ĉ�,k� operators
are then still well defined and Rk*

−1�0�, with Xk�k*�0. Such
a situation arises, for example, in the case of the itinerant
solution �see Sec. IV B� for large next-nearest-neighbor hop-
ping amplitude 
t1

d / t2
d
�3. Except for k* Eqs. �E6� and �E8�

remain valid in the thermodynamic limit, and the ground-
state expectation values of the momentum occupation be-
comes

Ĉ1,k�
† Ĉ1,k�� = 1, Ĉ2,k*�

† Ĉ2,k*�� = 0,

�E9�
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Ĉ2,k�k*�
† Ĉ2,k�k*�� =

1

2
.

We note that for one vector k* the maximum total spin de-
creases from N	 /2 to N	 /2−1 since in the sum over kn in
Eqs. �E1� and �E2� the term with k* is missing.

3. Expectation values for correlation functions

A key problem in the calculation of correlation functions
is the evaluation of expectation values of products of four

Ĉ2,k� operators. Using Eq. �E3� one finds

Ĉ2,k3�3

† Ĉ2,k4�4
Ĉ2,k1�1

† Ĉ2,k2�2

�g,�����

= �k1,k4
��1,�4�

n=1

N	


�g,����,n
�k3�3�,�k2�2�� + �1 − �k1,k3

��1,�3
��1

− �k2,k4
��2,�4

��
n=1

N	

�
m=1,m�n

N	


�g,����,m,n
��k3�3�,�k4�4��;��k1�1�,�k2�2��� ,

�E10�

where k4=k3+k1−k2. Here 
�
g,����,n
�k3�3�,�k2�2�� is defined in Eq.

�E3�, and


�g,����,m,n
��k3�3�,�k4�4��;��k1�1�,�k2�2��� = ��

k�

N	

Ĉ1,k�↑
† Ĉ1,k�↓

† 	�� 1
�N	

�
k�

N	

Xk�e
ik�i1Ĉ2,k��i1

�
† 	 � ¯ � � 1

�N	

�
k�

N	

Xk�e
ik�im−1Ĉ2,k��im−1

�
† 	

�� 1
�N	

Xk4
eik4imĈ2,k3�3

† ��im
� ,�4	� 1

�N	

�
k�

N	

Xk�e
ik�im+1Ĉ2,k��im+1

�
† 	 � ¯

� � 1
�N	

�
k�

N	

Xk�e
ik�in−1Ĉ2,k��in−1

�
† 	� 1

�N	

Xk2
eik2inĈ2,k1�1

† ��in
� ,�2	� 1

�N	

�
k�

N	

Xk�e
ik�in+1Ĉ2,k��in+1

�
† 	

� ¯ � � 1
�N	

�
k�

N	

Xk�e
ik�iN	Ĉ2,k��iN	

�
† 	�
0� �E11�

contains only contributions with n�m. The expectation
value of the density-density correlation function can be
calculated from Eq. �E10�, with �1=�2=�a, �3=�4=�b,
where a summation ��a

��b
has to be included.

Introducing the notations Z̄k3,k1

k4,k2 =Zk3�k1,k1

k4�k2,k2, where Zk3,k1

k4,k2

=Xk4
Xk2

/ �Xk3
Xk1

N	� and using the procedure leading to Eq.
�E6� one then finds

� �
�a,�b

Ĉ2,k3�b

† Ĉ2,k4�b
Ĉ2,k1�a

† Ĉ2,k2�a�
= �k1,k4

�k2,k3
+ �k1,k2

�k3,k4
− Z̄k3,k1

k4,k2�k4,k3+k1−k2
.

�E12�

The same expression is obtained if we calculate the expecta-
tion value in the T→0 limit, as described in connection with
Eqs. �E7� and �E8�.

In the case of the spin-spin correlation function for the Sz

components one again has �1=�2=�a and �3=�4=�b, but
the sum over the spin indices must be separately performed
for �b=�a=� and �b=−�a=�. Using Eqs. �E7�, �E8�, and
�E10�, one finds in the T→0 limit

��
�

Ĉ2,k3�
† Ĉ2,k4�Ĉ2,k1�

† Ĉ2,k2��
= �k1,k4

�k2,k3
+

1

2
�k1,k2

�k3,k4
−

1

2
Z̄k3,k1

k4,k2�k4,k3+k1−k2
,

��
�

Ĉ2,k3�
† Ĉ2,k4�Ĉ2,k1−�

† Ĉ2,k2−��
=

1

2
�k1,k2

�k3,k4
−

1

2
Zk3,k1

k4,k2�k4,k3+k1−k2
. �E13�

To calculate the spin-spin correlation functions for the
Sx ,Sy components, Eq. �E10� must be evaluated for �3=�2
=−�1=−�4=�, and the summation �� must be performed.
In the T→0 limit one finds

��
�

Ĉ2,k3�
† Ĉ2,k4−�Ĉ2,k1−�

† Ĉ2,k2�� = �k1,k4
�k2,k3

,

��
�

Ĉ1,k3�
† Ĉ2,k4−�Ĉ2,k1−�

† Ĉ1,k2���k4,k3+k1−k2
= �k2,k3

�k1,k4
.

�E14�
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34 The first equality in �35� leads to −�i,�ÂIi,�
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=�keikiÂk�
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i.e., Ĉ2,k,�
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