11,217 research outputs found

    Comparison of Four Space Propulsion Methods for Reducing Transfer Times of Manned Mars Mission

    Full text link
    We assess the possibility of reducing the travel time of a manned mission to Mars by examining four different propulsion methods, and keeping the mass at departure under 2,500 tonnes, for a fixed architecture. We evaluated representative systems of three different state of the art technologies (chemical, nuclear thermal, and electric), and one advance technology, the "Pure Electro-Magnetic Thrust" (PEMT) concept (proposed by Rubbia). A mission architecture mostly based on the Design Reference Architecture 5.0 is assumed in order to estimate the mass budget, that influences the performance of the propulsion system. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn. We conclude that the ion engine technology, combined with the classical chemical engine, yields the shortest mission times for this architecture with the lowest mass, and that chemical propulsion alone is the best to minimise travel time. The results obtained using the PEMT suggest that it could be a more suitable solution for farther destinations than Mars.Comment: Change in title, abstract and presentation so to clarify the main results. 14 pages, 7 figures and 2 table

    About the ergodic regime in the analogical Hopfield neural networks. Moments of the partition function

    Full text link
    In this paper we introduce and exploit the real replica approach for a minimal generalization of the Hopfield model, by assuming the learned patterns to be distributed accordingly to a standard unit Gaussian. We consider the high storage case, when the number of patterns is linearly diverging with the number of neurons. We study the infinite volume behavior of the normalized momenta of the partition function. We find a region in the parameter space where the free energy density in the infinite volume limit is self-averaging around its annealed approximation, as well as the entropy and the internal energy density. Moreover, we evaluate the corrections to their extensive counterparts with respect to their annealed expressions. The fluctuations of properly introduced overlaps, which act as order parameters, are also discussed.Comment: 15 page

    How glassy are neural networks?

    Full text link
    In this paper we continue our investigation on the high storage regime of a neural network with Gaussian patterns. Through an exact mapping between its partition function and one of a bipartite spin glass (whose parties consist of Ising and Gaussian spins respectively), we give a complete control of the whole annealed region. The strategy explored is based on an interpolation between the bipartite system and two independent spin glasses built respectively by dichotomic and Gaussian spins: Critical line, behavior of the principal thermodynamic observables and their fluctuations as well as overlap fluctuations are obtained and discussed. Then, we move further, extending such an equivalence beyond the critical line, to explore the broken ergodicity phase under the assumption of replica symmetry and we show that the quenched free energy of this (analogical) Hopfield model can be described as a linear combination of the two quenched spin-glass free energies even in the replica symmetric framework

    The Longest Common Subsequence Problem Revisited

    Get PDF

    Spin Glass Computations and Ruelle's Probability Cascades

    Full text link
    We study the Parisi functional, appearing in the Parisi formula for the pressure of the SK model, as a functional on Ruelle's Probability Cascades (RPC). Computation techniques for the RPC formulation of the functional are developed. They are used to derive continuity and monotonicity properties of the functional retrieving a theorem of Guerra. We also detail the connection between the Aizenman-Sims-Starr variational principle and the Parisi formula. As a final application of the techniques, we rederive the Almeida-Thouless line in the spirit of Toninelli but relying on the RPC structure.Comment: 20 page

    Fast linear-space computations of longest common subsequences

    Get PDF
    AbstractSpace saving techniques in computations of a longest common subsequence (LCS) of two strings are crucial in many applications, notably, in molecular sequence comparisons. For about ten years, however, the only linear-space LCS algorithm known required time quadratic in the length of the input, for all inputs. This paper reviews linear-space LCS computations in connection with two classical paradigms originally designed to take less than quadratic time in favorable circumstances. The objective is to achieve the space reduction without alteration of the asymptotic time complexity of the original algorithm. The first one of the resulting constructions takes time O(n(m−l)), and is thus suitable for cases where the LCS is expected to be close to the shortest input string. The second takes time O(ml log(min[s, m, 2nl])) and suits cases where one of the inputs is much shorter than the other. Here m and n (mâ©œn) are the lengths of the two input strings, l is the length of the longest common subsequences and s is the size of the alphabet. Along the way, a very simple O(m(m−l)) time algorithm is also derived for the case of strings of equal length

    Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain?

    Get PDF
    A marked increase in the prevalence of S. enterica serovar 4,[5],12:i:- with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines (R-type ASSuT) has been noted in food-borne infections and in pigs/pig meat in several European countries in the last ten years. One hundred and sixteen strains of S. enterica serovar 4,[5],12:i:- from humans, pigs and pig meat isolated in England and Wales, France, Germany, Italy, Poland, Spain and the Netherlands were further subtyped by phage typing, pulsed-field gel electrophoresis and multilocus variable number tandem repeat analysis to investigate the genetic relationship among strains. PCR was performed to identify the fljB flagellar gene and the genes encoding resistance to ampicillin, streptomycin, sulphonamides and tetracyclines. Class 1 and 2 integrase genes were also sought. Results indicate that genetically related serovar 4,[5],12:i:- strains of definitive phage types DT193 and DT120 with ampicillin, streptomycin, sulphonamide and tetracycline resistance encoded by blaTEM, strA-strB, sul2 and tet(B) have emerged in several European countries, with pigs the likely reservoir of infection. Control measures are urgently needed to reduce spread of infection to humans via the food chain and thereby prevent the possible pandemic spread of serovar 4,[5],12:i:- of R-type ASSuT as occurred with S. Typhimurium DT104 during the 1990s

    A(e⃗,eâ€Čp⃗)(\vec{e},e'\vec{p})B responses: from bare nucleons to complex nuclei

    Full text link
    We study the occurrence of factorization in polarized and unpolarized observables in coincidence quasi-elastic electron scattering. Starting with the relativistic distorted wave impulse approximation, we reformulate the effective momentum approximation and show that the latter leads to observables which factorize under some specific conditions. Within this framework, the role played by final state interactions and, in particular, by the spin-orbit term is explored. Connection with the nonrelativistic formalism is studied in depth. Numerical results are presented to illustrate the analytical derivations and to quantify the differences between factorized and unfactorized approaches.Comment: 26 pages, 5 figures. Improved and extended version. To be published in Phys. Rev.

    On Computing Longest Common Subsequences in Linear Space

    Get PDF

    Analogue neural networks on correlated random graphs

    Full text link
    We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: Both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.Comment: 34 pages, 3 figure
    • 

    corecore