
Theoretical Computer Science 92 (I 992) 3- 17

Elsevier

3

Fast linear-space computations of
longest common subsequences

A. Apostolico”

S. Browne
Department of‘ Computer Science, Purdue University. West Lqfayrtte, IN 47907, USA

C. Guerra**
Depurtment of Computer Scirnce. Purdue Uniwrsiiy. West Lqfbwtie. IN 47907, USA, and

Dipurtimento di Maternuticu, L’nirersitj, of Ronte I, Rome. I/U/J

Apostolico, A.. S. Browne and C. Guerra, Fast linear-space computations of longest common

subsequences, Theoretical Computer Science 92 (1992) 3-17.

Space saving techniques in computations of a longest common subsequence (LCS) of two strings are

crucial in many applications, notably, in molecular sequence comparisons. For about ten years,

however, the only linear-space LCS algorithm known required time quadratic in the length of the

input. for all inputs. This paper reviews linear-space LCS computations in connection with two

classical paradigms originally designed to take less than quadratic time in favorable circumstances.

The objective is to achieve the space reduction without alteration of the asymptotic time complexity

of the original algorithm. The first one of the resulting constructions takes time 0 (n(m - I)), and is

thus suitable for cases where the LCS is expected to be close to the shortest input string. The second

takes time 0 (ml log(min [s, m, 2n/l])) and suits cases where one of the inputs is much shorter than

the other. Here m and n (m < n) are the lengths of the two input strings, I is the length of the longest

common subsequences and s is the size of the alphabet. Along the way, a very simple O(m(m-l))

time algorithm is also derived for the case of strings of equal length.

1. Introduction

Given a string CI over an alphabet C = (ol, CT~, . . . , os), a subsequence of a is any string

y that can be obtained from x by deleting zero or more (not necessarily consecutive)

*Work by this author was supported in part by the French Ministry of Education, by the NSF under
Grant CCR-89-00305, by NIH Library of Medicine under Grant ROl LM05118, by AFOSR under Grant

90-0107, by the National Research Council of Italy, and by NATO under Grant CRG900293.

**Work by this author was supported in part by the Italian Ministry of Education.

0304-3975/92/$05.00 c 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82152137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 A. Apostolico, S. Browne, C’. Guerru

symbols. The longest common subsequence (LCS) problem for input strings

m=a,a, . ..a. and fl=b, b2 . . . b, (m< n) consists of finding a third string

y=clcz . . . c, such that B is a subsequence of CI and also a subsequence of p, and 7 is of

maximum possible length. In general, string y is not unique.

The LCS problem arises in a number of applications spanning from text editing to

molecular sequence comparisons, and it has been studied extensively over the past.

General lower bounds for the problem are time Q(n log n) or linear time, according to

whether the size s of C is unbounded or bounded. For unbounded alphabets, any

algorithm using only “equal-unequal” comparisons takes Q(nm) time in the worst case

[l]. The asymptotically fastest general solution takes time O(n’ log log n/log n) [121.

Time @(mn) is achieved by the following dynamic programming algorithm [7, 173.

Let L [O.. m, 0.. n] be an integer matrix initially filled with zeros. Now execute:

fori=l tomdo

forj=l tondo ifai=bithenL[i,j]=L[i-l,j-l]+l

else L[E,j]=Max{L[i,j-11, L[i-l,j]}.

The above code transforms L in such a way that L [i, j] (1 <i < m, 1 < j <n) contains

the length of an LCS between zi = a, a, . a, and fij = b, b, . bj. If only the length of

y is desired, then this code is easily adapted to run in linear space. If an LCS is wanted,

it becomes necessary to keep a record of the decision made at every step, so that y can

be retrieved at the end through backtracking. The early O(nm) time algorithm in [7]

achieves both a linear space bound and the production of an LCS at the outset,

through a combination of dynamic programming and divide-and-conquer. Sub-

sequent linear-space algorithms such as in [14, 31 follow the same basic divide-

and-conquer scheme as in [7] but require less time than @(nm) for favorable inputs.

Efficient algorithmic design for the LCS problem has experienced a new wave of

interest in recent years, especially due to the need to process increasingly numerous

and long inputs that arise in molecular sequence comparisons (see, e.g. [11, 161). The

resulting constructions improve on the time performance in cases of special interest, or

use only linear space, or do both. For instance, the algorithms in [4] improve on an

early algorithm in [S] for the case of strings that differ in length considerably, and

improve on the worst-case performance of the strategy in [9]. Another line of research

has focused on the efficient handling of the cases where the length of an LCS is

expected to be close to the length of the shorter input string. One of the early

constructions in [S] achieves time O((m- /)/log n) for this case. (An additional

O(n logs) term is to be added to all time bounds reported here. Usually, this term is

charged by a preprocessing phase.) More recently, an alternate construction re-

quiring 0 ((m - 1) n) was proposed in [151, along with another 0 ((m-l) 1 log n) algo-

rithm (it is relatively easy to check that the second bound can be reduced to

O(m(m - I)min {logs, log m, log 2n/l}) by the techniques developed in [3]). Linear-

space implementation of the 0 ((m - I)n) algorithm in [151 was subsequently

achieved in [lo], through a divide-and-conquer scheme that is reminiscent of, but

Fust computations of longest common subsequences 5

not identical to that of [7]. An algorithm taking time O(ne) in terms of the quantity

e=m+n-21 was proposed in [14]. This algorithm has expected time O(n+e’)

and a nice, though admittedly impractical, O(n log n + e’) variation. Also these stra-

tegies can be implemented in linear space. However, since Idm, then e2 =@(n’)

for n>2m. In other words, the bound in [14] is comparable to those in [S, 15, lo]

only in the case of strings of nearly equal length.

In this paper, we study additional linear-space algorithms suitable for the case

where 1 is close to m, or m is much smaller than n, or both conditions are met. We start

by showing that, for m= n, an O(n(n-l)) algorithm of great conceptual simplicity

results from introducing some kind of dualization in the classic strategy of [9].

Equally simple extensions enable us to handle the case m d II, in time 0 (n(m - I)) and

linear space. Finally, we discuss a linear-space implementation of one of the

algorithms in [3], preserving the O(mllog(min[s,m,2n/m])) time bound of that

algorithm.

2. Preliminaries

The ordered pair of positions i and j of L, denoted [i, j], is a match iff ai = bj = ct for

some t, 1 <t <s. If [i, j] is a match, and an LCS yi.j of Cli and ~j has length k, then k is

the rank of [i,j]. The match [i,j] is k-dominant if it has rank k and for any other pair

[i’, j’] of rank k either i’ > i and j’ < j or i’ <i and j’ > j. Computing the k-dominant

matches (k = 1, 2, . , I) is all that is needed to solve the LCS problem (see, e.g. [3, 81).

It is useful to define, on the set of matches in L, the following partial order relation:

match [i, j] precedes match [i’, j’] if i < i’ and j < j’. Then, the LCS problem translates

into the problem of finding a longest chain in the poset of matches. Most known

approaches to the LCS problem compute a minimal antichain decomposition (refer, e.g.

to [S]) for this poset. A set of matches having equal rank is an antichain in this

decomposition. For general posets, a minimal antichain decomposition is computed

by flow techniques [S], although not in time linear in the number of elements of the

poset. The main algorithms discussed in this paper have their natural predecessors in

[9,8]. In terms of antichain decompositions, the approach of [S] consists of comput-

ing the antichains one at a time, while that of [9] extends partial antichains relative to

all ranks already discovered, one step at a time. The interested reader shall find that

also the approach in [15], which yields bounds of O(n(m- 1)) or O(m(m- I)log n)

may fall into this second category.

Our algorithms achieve linear space through a divide-and-conquer scheme similar

to that of [lo]. The recurrent step of this scheme takes as input: (1) two strings E and

6 such that E is always a substring, say, of p and 6 is always a substring of the other

string; (2) the length 1 of an LCS of E and 6. The task of the step is to produce an LCS of

E and 6. This is achieved by first computing a suitable cut for an LCS of E and 6 and

then by applying the same scheme on the two subdomains of the problem induced by

the cut. A cut is any pair [u, 2;] such that an LCS of e and 6 can be formed by

6 A. S. Browne, Guerra

concatenating an LCS of the prefixes a, and 6, with an LCS of the corresponding

suffixes of the two strings. A more detailed description of the scheme is as follows.

Procedure lcs (&,6, iI , i2, j, , j, ,I, LCS)

begin

if l=c or min[lal, 161]-I=cfor some constant c then

determine an LCS in time O(j~llSl) and space O(min[lcl, 1611)

else

begin (split the problem into subproblems)

choose a cut [u, v], 1 <u<ltl, 16~6161

lcs(~,6,i~,i~+u-l,j~,j~+u~1,l~,LCSl);

lcs(E, 6, i, + u, i2 ,jl + 21, j,, 12, LCS2);

LCS= LCSl 11 LCS2;

end

end.

The major difference between the above scheme and that in [7] is in the fact that

here 1 has to be computed prior to running lcs. In the following sections, we present

various ways of computing 1 and correspondingly choose and compute a suitable cut

inside lcs. Obviously, the overall time performance of the scheme depends crucially on

the way that cuts are chosen and computed. As in the algorithm of [lo], we want to

choose the cuts so as to achieve the best balance, in the sense that the total time

required to solve both induced subproblems is about one half of the time required to

solve the original problem.

3. The 0 (n(n-1)) procedure length1 for the case n=m

In this section, we assume n =m and present a simple O(n(n- 1)) time strategy

which is complementary to that used in [9] (to keep our presentation short, some

familiarity with [9] is assumed). The case n = m arises in the row-wise comparison of

digitized pictures and thus has special interest. The HunttSzymanski approach

consists of detecting the dominant matches of all available ranks by processing the

matches in the L matrix row by row. For this purpose, a list of thresholds we will call

row-THRESH is used. After the processing of a row, the kth entry in row-THRESH

contains the column of the leftmost k-dominant match found so far. For example, for

a = ahcdbb and fi = cbacba, the L-matrix would be as shown in Fig. 1. After processing

the sixth row, the final set of row thresholds would be { 1,2,5j. The approach of [9]

consists of updating row-THRESH row after row, based on the new matches intro-

duced by each row. Note that m- I= 3 positions are missing from the final set of

thresholds, namely positions 3,4, and 6. We call each such missing position a gap, and

we call the sorted list of gaps row-COTHRESH.

Similarly, we can define the list colu-THRESH such that the kth entry contains the

row number of the rightmost k-dominant match found so far. For the example in

123456

cbacba
I a
2 b

3 c
4 d

5 b
6 b

Fig. I. The trace of wwTHRESH on an L-matrix.

Fig. 1, the final set of column thresholds would be { 1,2,5}. The corresponding set

colu-COTHRESH of gaps would be {3,4,6}. Clearly, the COTHRESH lists can be

deduced from the THRESH lists, and vice versa. If m - 1~ 1, then COTHRESH lists

give a more compact encoding of the final set of thresholds. Unfortunately, this is not

always true at any stage of the row-by-row computation, since THRESH can be

initially more sparse and COTHRESH correspondingly denser. However, if we

consider only the upper-left square submatrices of the L-matrix, then we can obtain

a suitable bound on the size of the COTHRESH lists.

Lemma 3.1. The totul number of gapsfalling within thejirst i positions of either the ith

row or the ith column of the L-matrix cannot he larger than m - 1.

Proof. Observe that there must be an equal number of gaps in the ith row and in the

ith column. Let ~1 be this number. Then the number of matches contributed to any

LCS by the upper left ix i submatrix of the L-matrix cannot exceed i-q. Since the

remaining portion of the L-matrix cannot contribute more than m-i matches, it must

be ld(m-i)+(i-q)=m-q. But then m-l>q. 0

Lemma 3.1 suggests that the length of an LCS of c(and p with 1 a) = 1 /I) can be found

by extending, one row and one column at a time, submatrices of the L-matrix. This is

done by the procedure length1 which we now describe. At the ith iteration, the

procedure scans from left to right the O(m- 1) cells of the two COTHRESH lists. If in

the row-COTHRESH list we find a cell containing position p < i such that ai= b,, then

[i, p] is a dominant match. Continuing the scan, the first cell (if any) is located with an

entry larger than I +p’, where p’ is the value stored in the immediately preceding cell.

This jump in the list of gaps represents a threshold, namely, the first threshold to the

right of p. If such a cell is found, then for some i’<i, [i’, p’f l] is a dominant match

having the same rank as [i,p]. Hence, gap p’+ 1 is inserted into row-COTHRESH. If

no such cell is found, then [i, p] is the first dominant match found of its rank, and the

cell containing i is removed from colu-COTHRESH. The processing of the colu-

COTHRESH list is similar.

8 A. Apostolico, S. Browne, C. Guerra

Note that we can easily determine the rank of any newly detected dominant match,

as follows. Call a position in which a gap does not occur a line. Upon beginning the

scan of a COTHRESH list, initialize Y to 1. During the scan, increment r by the

number (zero or greater) of lines that are skipped over at each step. Then, when

a dominant match is found, it will be of rank r. The highest rank detected is the length

of an LCS for the two input strings. Some extra bookkeeping can be added to the

process to support the retrieval of an LCS y at the end. This would, however, havoc

the linearity of space. At this stage, we are interested mainly in the computation of / y /,

and the tedious details involved in such a bookkeeping are omitted. We summarize

the preceding discussion in the following claim.

Theorem 3.2. Given two strings x and p with /x I= l/31 = n, the procedure length1

computes the length of an LCS of 3 and b in time O(n(n - 1)) and linear space.

4. Computing the length when n > m

When n > m the argument supporting Lemma 3.1 does no longer hold. We shall see,

however, that the basic technique of the preceding section can still be applied, with

small changes. The main tool needed is a procedure that tests, for any integer p in the

range [0, m], whether a and p have an LCS of length m-p. We describe first such

a procedure, which we call length2. Later, we show that a procedure length3 for

computing the length of an LCS of 2 and /3 in O(n(m-1)) time descends naturally

from length2.

Procedure length2 uses the following simple observation. Suppose strings x and

/I have LCS length of 1. Then there is at least one such LCS, say, y, that uses only

dominant matches. Let [i,j] be one such match. Then, [i, j] appears in the jth

colu-THRESH list and, implicitly, in the jth colu-COTHRESH list. Let f be the

number of gaps preceding [i,j] in column j of the L-matrix. Then the prefix of y that is

an LCS for Zi and Bj uses precisely i -frows among the first i rows of the L-matrix. By

an argument similar to that of Lemma 3.1, it must be that f< m - 1 since the remaining

m-i rows cannot contribute more than m-i matches to y. In other words, no

dominant match in an LCS can be preceded by more than m-l gaps in the cothresh

list relative to the column where that match occurs.

In conclusion, to test whether there is a solution of length m-p, it is sufficient to

produce the n successive updates of the first p entries of colu-COTHRESH. By our

preceding discussion, this takes time O(np) and linear space. At the end, either we will

obtain a match of rank m-p or higher in this list, or we will know that no LCS of

length at least m-p exists. We are now ready to present procedure length3, which

simply consists of running the 0 (pn) procedure length2 with p = 0, 1,2,4,8, . . . until it

succeeds. Procedure length2 will succeed when p is at most 2(m- 1). Thus the total

time spent by length3 is proportional to 2n(m-l)+n(m-l)+ 1/2n(m-l)+ ... +2n+

n+n=4n(m-l)+n, which is O(n(m-1)). This establishes the following claim.

Fust computations of longest cornmoM subsequences 9

Theorem 4.1. Procedure length3 computes the length 1 of y in O(n(m-1)) time and

linear space.

5. The linear-space, O(n(m-1)) time algorithm KS1

In this section, we show that length2 and length3 (length1 if m= n) can be easily

combined with lcs to produce an LCS of the two input strings CY and 8. We call the

resulting algorithm 1~1. In what follows we describe the structure of lcsl and

maintain the following bounds.

Theorem 5.1. Algorithm lcsl computes an LCS of CY and /3 in time O(n(m- 1)) and linear

space.

The two issues to be addressed are the computation of 1 that has to precede the

execution of lcs and the choice and computation of a cut inside the body of lcs. We use

length1 or length3, depending on whether m = n or m < n, to compute 1. From this, we

know p = m - 1. This takes time O(np) and linear space. We now call lcs on E = p and

6 =(x. Inside lcs, we will maintain that the value w = 1 b I- 1 (i.e. the value of p relative to

the current subdomain of the problem) is always known. More precisely, we maintain

that at the kth level of recursion, w d rp/2kl. This is achieved by computing cuts that

always divide w in two halves. We call these cuts balanced cuts. We will show how the

computation of all balanced cuts needed at the kth level of recursion can be carried

out in time O(np/2k) and linear space. Before describing how this is done, we observe

that this condition establishes, for the time bound T(n, p) of lcs, a recurrence of the

form: T(n, p) = cnp + T(nI , np/2) + T(nz , np/2), with n, + n2 = n and c a constant. With

initial conditions of the type T(h, 0) < bph, where b is another constant, this recurrence

has solution O(np).

Let n and m d n be the lengths of E and S, respectively, and let I= m - p be the length

of an LCS for the two strings. The following lemma will be used to find a balanced cut

for E and 6 (see Fig. 2).

Lemma 5.2. Assume m>p32 and let p=pI+p2+p3 with pl#O, pz=O, and p3#0.

Then, there is an LCS y = y1 y2 y3 of E and 6 for which it is possible to write E = EI E’ &3 and

6 =6l d6’d’d3 with d and d’ symbols qf C, in such a way that: (1) y consists only of

dominant matches; (2) for i= 1,2,3, yi is an LCS of ~~ and 6’ and 16’1-(y’/=p;; (3) let

e and e’ be, respectively, the last symbol of E1 and the first symbol of e3. then e and d do

not form a dominant match in L and e’ #d’.

Proof. In the L-matrix, consider in succession the columns relative to the positions of

6. We start with a counter initialized to zero and update it according to the following.

Consider column 1. As is easy to check, if there is any match in column 1, then the one

such match occupying the row of lowest index is also the unique dominant match in

10

I I

lj I j’=j+g+l

I I I I I I
1 2

‘-6-b’d ‘+6+ d’ C ‘1 s3 -a’

- f ---

2 I l --
i e

- ---

E2

I

I

I

Y’ I

I
I

r

Y2

i’ - I ---
e’
--

--------.

a

- 1 ---

I I

I I

I I

I I
I I

I I

I I

I

I
I

I

I

I
-I

Y3

Fig. 2. Illustrating Lemma 5.2

column 1. If there is a solution 7 that uses a match in this column, then we pick the

only dominant match in this column and initialize with it a string ;“. If this is not the

case, we increment the counter by one. Assume we have handled all columns up to

h- 1 updating the counter or extending the prefix 7’ of an optimal solution 7,

according to the cases met. Considering column h, we increment the counter if and

only if no match in that column could be used to extend the length of y’ by one unit in

such a way that the extended string would still be the prefix of an optimal solution. If

some such matches exist, we append to 3’ the one such match contained in the row of

smallest possible index (observe that the match thus selected is a dominant match). In

conclusion, each column at which the counter is not incremented extends the subsequ-

ence y’ by one new dominant match, while the fact that the counter is incremented at

some column h signals that 7’ could not have been continued into an optimal solution

;’ had we picked a match in column h.

Let now j be the leftmost column at which the counter reaches the value pi, and let

i be the row containing the last one among the matches appended to 7’. We claim that

entry [i,j] cannot be a dominant match. In fact, if [i,j] is a match, then clearly its

rank is at least /?‘I. Assuming the rank of [i,j] higher than /y’I leads to a contradic-

tion. In fact, in this case we can find a string q such that ~7” is an LCS of E and 6,

“I’=;’ i ‘J’ is also an LCS of c and 6 and yet 1~7 I > / 7 1. Thus, either [i, j] is not a match or

it is a nondominant match of rank equal to the last match of y’ used so far. We set 6’

equal to the prefix of 6 of length j- 1, cl equal to the prefix of c of length i, y1 =y’,

e = E [i] and it = 6 [j]. These choices are consistent with the properties listed in the

lemma for the objects involved.

To continue with the columns of L that fall past columnj, we distinguish two cases,

according to whether or not 1” can be extended with a match in columnj+ 1. If y’ can

be extended with a match in columnQ+ I, let j+ 1, jf2, j+y be the longest run of

consecutive columns such that each column contributes a new match to y’. By the

hypothesis p1 <p, we have j + 9 < ~1 (i.e. we must be forced to skip at least one more

column). Let i’ be the row such that [i', j+y] is a match of 1~‘. Then, by our choice of

y the entry [i’+ l,j+s+ l] cannot be a match. We set 8’ equal to the substring of

E that starts at position i+ 1 and ends at position i’, 6’ equal to the substring of 6 that

startsatj+l andendsatj+y.andr’=e[i’+l]andd’=6[j+y+l].Finally,wetake

the suffix of length 9 of 7’ as ;,‘. Clearly, these assignments satisfy the conditions in the

claim. The choices performed so far induce a unique choice of c3, 63, and y3. By our

construction of ;s’, there is an optimal solution 7 which has ;I’ =yl y2 as a prefix. In any

such solution, 7’ must be followed by an LCS ofz3 and d3 of length Id3 1 -(p-p1 -p2),

i.e. of length Id3 1 -p3, Thus the remaining conditions of the claim are also met. If ;”

cannot be extended with a match in columnj+ 1, then the claim still holds by simply

taking d2 and yz both empty. 0

With p, = r p/2 1 Lemma 5.2 can be used in the computation of a balanced cut for

E and 6, as follows. We treat the case where p is even, the case of odd p being quite

similar. Let j andj’ =j + g + 1 be the positions in 6 of d and d’, respectively, and let i be

the position in E of the last symbol of 8’. Clearly, [i’,j’- l] is a balanced cut. Observe

that this cut coincides with [i,j] if ;‘2 is empty.

We now run Irnyth2 on the ordered pair (6, E) and with parameter p/2 + 1. We use

this run to prepare an array REACH with the property that REACH [i] contains the

column index relative to the (pi2 + 1)th gap in the COTHRESH list at row i. Observe

that, by condition 3 of the lemma, if i’ -t 1 is the position in E of the first symbol of Ed,

then REACH [i’+ l] equals precisely the position j’ of d’ in 6.

Next, we run a copy of /myth2 on the ordered pair (dR, Ed) of the reverse strings of

the two input strings, this time with parameter p/2. An array REVREACH similar to

REACH is built in this way. Since [i’t l,j] is not a match and we know that

/b31-)731=p/2, then REVREACH[i’+l]=j’.

Clearly, any index i* for which REACH [i*] = RE VREACH [i*] yields a corres-

ponding balanced cut [i *- 1, REACH [i*]- 11. By Lemma 5.2 and the above

discussion, at least one such index is guaranteed to exist. In conclusion, we only need

to scan the two arrays REACH and REVREACH looking for the first index k such

12 A. Apostolico, S. Browne, C. Guerra

that REACH[k] = RE VREACH [k]. Having found such an index, we can set, for our

balanced cut [u, v], u = k - 1 and v = REACH [k] - 1 = RE VREACH [k] - 1.

As already mentioned, the case of odd p is dealt with similarly. At the top level of the

recursion, this process takes O(np) time and linear space. Since the parameter p is

halved at each level, the overall time taken by the computation of cuts is still O(np).

The recursion can stop whenever the current partition of L has an associated value of

either the 1 or p not larger than some preassigned constant. For any such partition, an

LCS can be found by known methods in linear space.

6. The procedure length4

In this section, we study a procedure length4 that computes the length of an LCS of

sl and p in time 0 (Im log(min [s, m, 2n/m])). Since symbols not appearing in CI cannot

contribute to an LCS, we can eliminate such symbols from /I and assume henceforth

s<m, which eliminates the logm from the bound. The procedure length4 is a direct

derivation of an algorithm in [3], which in turn follows a paradigm in [S]. For the

subsequent developments, we need to describe length4 in some detail. The procedure

consists of /sub stages which identify the /sub antichains of L in succession. It exploits

the same criterion as in [S] to trace an antichain: if [i,j] is a k-dominant match then

[i’,j’] with i’>i is a k-dominant match iff j’< j. At stage k only the leftmost

k-dominant match is recorded in the array RANK. The procedure uses the following

auxiliary structures:
_ For each symbol of the alphabet cr, a list o-OCC of all the occurrences of cr in /I;

- An array PEBBLE such that PEBBLE [i] (i= 1, . . . , m) contains a pointer to an

entry of a,-OCC. At the beginning, PEBBLE [i] (i = iI, . , iz) points to the entry j of

a,-OCC, which corresponds to the leftmost occurrence of ai in the interval [j, , . . , j,],

if any. PEBBLE [i] is then said to be active. The procedure advances an active pebble

until it becomes inactive, i.e. reaches an entry larger than j,, or the last entry of

ai-OCC. By the end of the execution of length4 each pebble is set to point to the

rightmost position that it can occupy in the interval [jr,. ., j,].

The algorithm uses also the function closest(a, t) which for any given character

cr returns the pointer to the entry in the a-OCC list corresponding to the leftmost

occurrence of rr in b which falls past h,.

Procedure length4 (iI, i2, jr, j,, RANK, /sub)

0 RANK[k]=O, k-l,2 ,..., (i2-iI);

1 k=O

2 while there are active pebbles do (start stage k+ 1)

3 begin T=j2+l; k=k+l;

4 for i = iI - 1 + k to iz do (advance pebbles)

begin

Fast computations of longest common subsequences 13

5 t = T;

6 if PEBBLE [i] is active and Ui-OCC [PEBBLE [i]] < T then

(update threshold, update leftmost k-dominant match)

7 begin T=ai-OCC [PEBBLE [i]]; RANK [k] = T end;

(advance pebble, or make it inactive)

8 PEBBLE [i] =ClOsest [Ui, t];

9 if PEBBLE [i] is active and ai-OCC [PEBBLE [i]] >j, then

10 begin PEBBLE [i] = PEBBLE [i] - 1; make PEBBLE [i] inactive end;

end;

end (Isub = k).

The procedure length4 detects all dominant matches [3]. Unlike the algorithm

presented in [3], however, it records only the leftmost dominant match incurred for

each k. This achieves the linear space bound.

All the elementary steps of length4, with the exception of the executions of closest,

take constant time. On an input of size n + m the procedure handles at most m pebbles

during each of the lsub stages. Thus the total time spent by length4 is O(mlsub+ total

time required by closest). The second term is obviously implementation dependent.

One efficient implementation of closest is discussed in [3]. It rests on two auxiliary

structures which we now proceed to describe. First, we prepare, in time 0 (n), the table

CLOSE [1 . II + l] which is subdivided into consecutive blocks of size s and defined as

follows. Letting p = j mod s (j= 1, . , n), CLOSE [j] contains the leftmost position not

smaller thanj where c,, occurs in p. Such a table enables us to implement closest in

time O(logs). By definition, if p=jmod s then CLOSE [j] =closest [o,,j] and thus

constant time suffices in this case. Otherwise, let j’ = (j div s) s + p, where diu stands for

the integer division operation. Two cases are possible: j’ <j or j’ >j. Assume j’ < j. If

CLOSE [j’] > j, then clearly CLOSE [j’] =closest Cop, j]. Otherwise, closest [u,, j] is

not smaller than CLOSE [j’] but not larger than CLOSE [j’ + s]. Now, there cannot

be more than s entries in o,-OCC list between the two entries CLOSE [j’] and

CLOSE [j’+s]. Thus closest [a,, j] can be retrieved in logs steps by performing

a binary search in this segment of the o,-OCC list. Similar considerations apply to the

case j’>j.

Next, we assume that each a-OCC list is assigned ajnger tree [3,2,6,13]. Roughly,

a finger-tree is a balanced search tree which can be traversed in any direction. The

finger is a pointer to any leaf in the tree. The main advantage conveyed by finger-trees

is that, in such a tree, the search for an item displaced d positions (leaves) away from

the current position of the finger can be carried out in O(logd) time. If the finger is

updated to point to the last searched item at all times, then searching for m consecut-

ive items in a tree which stores n keys is afforded in 0(JST= 1 log dk), where the intervals

dk’s are subject to the constraint that I;= 1 dk < 2n. This sum is maximum when all

intervals are equal, which yields the overall time bound of O(mlog(2n/m)).

14 A. Apostolico, S. Browne, C. Guerra

In order to keep track of the fingers we institute a new global variable, namely, the

array of integers FINGER [l . m]. At its inception, the procedure length4 moves all

the fingers FINGER [iI], FINGER [il + 11, FINGER[i2], originally coincident

with the pebbles, onto the rightmost position in the interval [jr . ..j.] that they can

occupy on their corresponding a-OCC lists. This positioning of each finger is accomp-

lished in 0 (min [log s, log (j, -jr)]) time through an application of closest. Fingers

set from different rows on the same a-OCC list merge into one single representatiae

finger.

During the execution of each stage of lengtk4, the (representative) finger associated

with each symbol in [iI i2] is reconsidered immediately following a closest query

and the possible consequent update of the pebble (cf. lines 8-10 of lengtk4). At that

point, we simply set: FINGER [i] =PEBBLE [il. Thus through each individual stage,

the finger associated with each symbol moves from right to left. Each of the manipula-

tions just described takes constant time. Finally, both fingers and pebbles are taken

back to their initial (leftmost) position immediately after the last stage of length4 has

been completed. Overall, this takes time O(i, - il). We summarize some results in [3]

in the form of the following theorem.

Theorem 6.1. By the combined use qf FINGER and CLOSE, the procedure

length4 computes the length lsub of an LCS of pi, . ai2 und Bj, . flj, in time

O(Isub.(i2 - i,).min [log s, log(2n/(i, - iI))]) and linear spuce.

7. The linear-space algorithm LCS2

We now show that the procedure length4 can be cast in the divide-and-conquer

scheme of Section 2 to produce an algorithm lcs2 that has time bound

O(m/ log(min [s, 2n/l])) and space O(n). For 1= 0 (m) (i.e. in applications that use this

algorithm fruitfully), this time bound is equal to that of the algorithm in [3].

We remove the previous assumption according to which, upon calling length4 with

j-parameters jr, j,, the procedure always finds pebbles and fingers pointing to the

leftmost positions in the interval [j, . j,]. We replace it with the new assumption

that either all pebbles and fingers occupy the rightmost positions in the interval

[j, . ..j.], or else they all occupy the leftmost one. Procedure length4 checks at its

inception which case applies, and brings all pebbles to their leftmost positions, if

necessary. This does not affect the time bound of the procedure. Algorithm lcsl uses

length4 both to compute 1 prior to executing lcs and to compute cuts inside the body

of Its. For this latter task we use a scheme similar to that of Icsl. We outline the

method for the case of even I, the case of odd I being handled similarly. We run two

copies of lenytk4, on the two mirror images of the problem, with the proviso that

computation in each row is stopped as soon as a dominant match of rank l/2 is

detected. All matches of rank l/2 so detected by each version of the procedure are

stored in one of two associated lists. Observe that the number of such matches cannot

exceed the total number of dominant matches detected, and this latter number cannot

be larger than ml, the number of matches handled at most by the procedure. At the

end, we scan the two lists looking for the first pair of matches, one from one list and

one from the other, that form a chain. From the positions in L of these two matches,

we can infer a balanced cut. In the present context, a cut is balanced if it identifies two

submatrices L’ and L” of L with the property that an optimal solution 7 can be formed

by concatenating two optimal solutions y’ and 7” entirely contained, respectively, in L’

and L” and both of length l/2. Leaving the details for an exercise, we concentrate on

the following claim.

Theorem 7.1. The procedure lcs2 jnds an LCS in time O(mllog(min[s, 211//l)) and

spuce 0 (n).

Proof. Each execution of length4 at the kth level of the recursion can be bounded in

terms of “I,-’ 1/2k log(min [s, 211/m,.]), where WZ~ denotes the number of rows assigned

to thefth subproblem. By the preceding discussion, the time needed to scan each pair

of antichains of maximum rank in order to find a balanced cut for that pair can be

absorbed in this bound. There are 2k calls at level k, yielding a total time:

up to a multiplicative constant. Now it is

Since rnf 3 1/2k, we have that the total work at this level of recursion can be bounded

in terms of the quantity:

m.$.log(min[s, ~2k])<m.&.log(min[s2k, F2k]).

The right term can be rewritten as:

Adding up through k = 1,2, , log 1 yields:

from which we obtain the 0 (ml log (min [s, 2n/l]) time bound. 0

16 A. Apostolico, S. Browne, C. Guerra

8. Conclusion

We have considered linear-space implementations of LCS algorithms that are faster

than quadratic in favorable cases. Our focus was kept on implementations that would

preserve the time complexity of the original algorithms. As noted, Ics2 is based on

a classical paradigm established in [8] and preserves the time performance of the

corresponding upgrade in [4]. Algorithm lcs2 is essentially similar to an earlier

algorithm of [3], which appears to be the first linear-space algorithm produced with

a time bound better than @(nm). While certainly an offspring of the paradigm of [9],

the final algorithm lcs 1 bears comparatively a smaller resemblance to it. However,

algorithm lcsl shows that the O(n(m-l)) performance in [15, lo] may descend

somewhat naturally also from the paradigm of [9]. Also, our initial steps towards the

design of lcsl have exposed a very simple algorithm the asymptotic worst-case

performance of which matches that of the algorithm in [14] for strings of equal

lengths. The time complexity of the original algorithm in [9] is O(r log n), where r is

the total number of matching pairs of symbols between z and /I. We leave it as an

exercise to derive a linear-space implementation of the algorithm in [9] based on the

template procedure lcs of Section 2. A known upgrade of the Hunt-Szymanski

algorithm [4] takes time O(mlogn+d log(2mn/d), where d is the total number of

dominant matches. It is an interesting question whether this upgrade can be imple-

mented in linear space without substantial denaturation of the formula expressing its

time complexity.

References

[l] A.D. Aho, D.S. Hirschberg and J.D. Ullman, Bounds on the complexity of the maximal common

subsequence problem, J. ACM 23 (1) (1976) I-12.

[2] A. Apostolico, Improving the worst-case performance of the HuntGSzymanski strategy for the longest

common subsequence of two strings, In@rm. Process. Lett. 23 (1986) 63-69.

[3] A. Apostolico and C. Guerra, A fast linear-space algorithm for computing longest common sub-

sequences, in: Proc,. 23rd ANerton Conf. Monticello, IL (1985).

[4] A. Apostolico and C. Guerra, The longest common subsequence problem revisited, AIyorithmica

2 (1987) 315-336.
[5] K.P. Bogart, Introductory Combinatorics (Pitman, London, 1983).

[6] M.R. Brown and R.E. Tarjan, A representation of linear lists with movable fingers, in: Proc. 10th

STOC, San Diego, CA (1978) 19-29.
[7] D.S. Hirschberg, A linear-space algorithm for computing maximal common subsequences, Comm.

ACM lS(6) (1975) 341-343.

[8] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24(4) (1977)
664-615.

[9] J.W. Hunt and T.G. Szymanski, A fast algorithm for computing longest common subsequences,
Comm. ACM 20 (5) (1977) 35&353.

[lo] S.K. Kumar and C.P. Rangan, A linear-space algorithm for the LCS problem, Acta Irzfororm. 24 (1987)

353-362.

[ll] H.M. Martinez, ed., Mathematical and computational problems in the analysis of molecular se-
quences, Bulletin of Mathematical Bioloyy (Special Issue honoring M.O. Dayhoff) 46(4) (1984).

Fast compututions of longest common subsequences 17

[12] W.J. Masek and MS. Paterson, A faster algorithm for computing string editing distances, J. Comput.

System Sci. 20 (1980) 18-31.

1131 K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs on TCS

(Springer, Berlin, 1984).

1141 E.W. Myers, An O(ND) difference algorithm and its variations, AIgorithmica 1 (1986) 251-266.

[lS] N. Nakatsu, Y. Kambayashi and S. Yajima, A longest common subsequence algorithm suitable for

similar text strings, Acru Informatica 18 (1982) 171-179.

1161 D. Sankoff and J.B. Kruskal (eds.), Time Warps, String Edits and Macromolecules: The Theory and
Practice oJ’Sequence Comparisons (Addison-Wesley, Reading, MA, 1983).

1171 R.A. Wagner and M.J. Fischer, The string to string correction problem,J. ACM 21(1)(1974) 168-173.

