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Space saving techniques in computations of a longest common subsequence (LCS) of two strings are 

crucial in many applications, notably, in molecular sequence comparisons. For about ten years, 

however, the only linear-space LCS algorithm known required time quadratic in the length of the 

input. for all inputs. This paper reviews linear-space LCS computations in connection with two 

classical paradigms originally designed to take less than quadratic time in favorable circumstances. 

The objective is to achieve the space reduction without alteration of the asymptotic time complexity 

of the original algorithm. The first one of the resulting constructions takes time 0 (n(m - I)), and is 

thus suitable for cases where the LCS is expected to be close to the shortest input string. The second 

takes time 0 (ml log(min [s, m, 2n/l] )) and suits cases where one of the inputs is much shorter than 

the other. Here m and n (m < n) are the lengths of the two input strings, I is the length of the longest 

common subsequences and s is the size of the alphabet. Along the way, a very simple O(m(m-l)) 

time algorithm is also derived for the case of strings of equal length. 

1. Introduction 

Given a string CI over an alphabet C = (ol, CT~, . . . , os), a subsequence of a is any string 

y that can be obtained from x by deleting zero or more (not necessarily consecutive) 
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symbols. The longest common subsequence (LCS) problem for input strings 

m=a,a, . ..a. and fl=b, b2 . . . b, (m< n) consists of finding a third string 

y=clcz . . . c, such that B is a subsequence of CI and also a subsequence of p, and 7 is of 

maximum possible length. In general, string y is not unique. 

The LCS problem arises in a number of applications spanning from text editing to 

molecular sequence comparisons, and it has been studied extensively over the past. 

General lower bounds for the problem are time Q(n log n) or linear time, according to 

whether the size s of C is unbounded or bounded. For unbounded alphabets, any 

algorithm using only “equal-unequal” comparisons takes Q(nm) time in the worst case 

[l]. The asymptotically fastest general solution takes time O(n’ log log n/log n) [ 121. 

Time @(mn) is achieved by the following dynamic programming algorithm [7, 173. 

Let L [O.. m, 0.. n] be an integer matrix initially filled with zeros. Now execute: 

fori=l tomdo 

forj=l tondo ifai=bithenL[i,j]=L[i-l,j-l]+l 

else L[E,j]=Max{L[i,j-11, L[i-l,j]}. 

The above code transforms L in such a way that L [i, j] (1 <i < m, 1 < j <n) contains 

the length of an LCS between zi = a, a, . a, and fij = b, b, . bj. If only the length of 

y is desired, then this code is easily adapted to run in linear space. If an LCS is wanted, 

it becomes necessary to keep a record of the decision made at every step, so that y can 

be retrieved at the end through backtracking. The early O(nm) time algorithm in [7] 

achieves both a linear space bound and the production of an LCS at the outset, 

through a combination of dynamic programming and divide-and-conquer. Sub- 

sequent linear-space algorithms such as in [14, 31 follow the same basic divide- 

and-conquer scheme as in [7] but require less time than @(nm) for favorable inputs. 

Efficient algorithmic design for the LCS problem has experienced a new wave of 

interest in recent years, especially due to the need to process increasingly numerous 

and long inputs that arise in molecular sequence comparisons (see, e.g. [ 11, 161). The 

resulting constructions improve on the time performance in cases of special interest, or 

use only linear space, or do both. For instance, the algorithms in [4] improve on an 

early algorithm in [S] for the case of strings that differ in length considerably, and 

improve on the worst-case performance of the strategy in [9]. Another line of research 

has focused on the efficient handling of the cases where the length of an LCS is 

expected to be close to the length of the shorter input string. One of the early 

constructions in [S] achieves time O((m- /)/log n) for this case. (An additional 

O(n logs) term is to be added to all time bounds reported here. Usually, this term is 

charged by a preprocessing phase.) More recently, an alternate construction re- 

quiring 0 ((m - 1) n) was proposed in [ 151, along with another 0 ((m-l) 1 log n) algo- 

rithm (it is relatively easy to check that the second bound can be reduced to 

O(m(m - I)min {logs, log m, log 2n/l}) by the techniques developed in [3]). Linear- 

space implementation of the 0 ((m - I)n) algorithm in [ 151 was subsequently 

achieved in [lo], through a divide-and-conquer scheme that is reminiscent of, but 
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not identical to that of [7]. An algorithm taking time O(ne) in terms of the quantity 

e=m+n-21 was proposed in [14]. This algorithm has expected time O(n+e’) 

and a nice, though admittedly impractical, O(n log n + e’) variation. Also these stra- 

tegies can be implemented in linear space. However, since Idm, then e2 =@(n’) 

for n>2m. In other words, the bound in [14] is comparable to those in [S, 15, lo] 

only in the case of strings of nearly equal length. 

In this paper, we study additional linear-space algorithms suitable for the case 

where 1 is close to m, or m is much smaller than n, or both conditions are met. We start 

by showing that, for m= n, an O(n(n-l)) algorithm of great conceptual simplicity 

results from introducing some kind of dualization in the classic strategy of [9]. 

Equally simple extensions enable us to handle the case m d II, in time 0 (n(m - I)) and 

linear space. Finally, we discuss a linear-space implementation of one of the 

algorithms in [3], preserving the O(mllog(min[s,m,2n/m])) time bound of that 

algorithm. 

2. Preliminaries 

The ordered pair of positions i and j of L, denoted [i, j], is a match iff ai = bj = ct for 

some t, 1 <t <s. If [i, j] is a match, and an LCS yi.j of Cli and ~j has length k, then k is 

the rank of [i,j]. The match [i,j] is k-dominant if it has rank k and for any other pair 

[i’, j’] of rank k either i’ > i and j’ < j or i’ <i and j’ > j. Computing the k-dominant 

matches (k = 1, 2, . , I) is all that is needed to solve the LCS problem (see, e.g. [3, 81). 

It is useful to define, on the set of matches in L, the following partial order relation: 

match [i, j] precedes match [i’, j’] if i < i’ and j < j’. Then, the LCS problem translates 

into the problem of finding a longest chain in the poset of matches. Most known 

approaches to the LCS problem compute a minimal antichain decomposition (refer, e.g. 

to [S]) for this poset. A set of matches having equal rank is an antichain in this 

decomposition. For general posets, a minimal antichain decomposition is computed 

by flow techniques [S], although not in time linear in the number of elements of the 

poset. The main algorithms discussed in this paper have their natural predecessors in 

[9,8]. In terms of antichain decompositions, the approach of [S] consists of comput- 

ing the antichains one at a time, while that of [9] extends partial antichains relative to 

all ranks already discovered, one step at a time. The interested reader shall find that 

also the approach in [15], which yields bounds of O(n(m- 1)) or O(m(m- I)log n) 

may fall into this second category. 

Our algorithms achieve linear space through a divide-and-conquer scheme similar 

to that of [lo]. The recurrent step of this scheme takes as input: (1) two strings E and 

6 such that E is always a substring, say, of p and 6 is always a substring of the other 

string; (2) the length 1 of an LCS of E and 6. The task of the step is to produce an LCS of 

E and 6. This is achieved by first computing a suitable cut for an LCS of E and 6 and 

then by applying the same scheme on the two subdomains of the problem induced by 

the cut. A cut is any pair [u, 2;] such that an LCS of e and 6 can be formed by 
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concatenating an LCS of the prefixes a, and 6, with an LCS of the corresponding 

suffixes of the two strings. A more detailed description of the scheme is as follows. 

Procedure lcs (&,6, iI , i2, j, , j, ,I, LCS) 

begin 

if l=c or min[lal, 161]-I=cfor some constant c then 

determine an LCS in time O(j~llSl) and space O(min[lcl, 1611) 

else 

begin (split the problem into subproblems) 

choose a cut [u, v], 1 <u<ltl, 16~6161 

lcs(~,6,i~,i~+u-l,j~,j~+u~1,l~,LCSl); 

lcs(E, 6, i, + u, i2 ,jl + 21, j,, 12, LCS2); 

LCS= LCSl 11 LCS2; 

end 

end. 

The major difference between the above scheme and that in [7] is in the fact that 

here 1 has to be computed prior to running lcs. In the following sections, we present 

various ways of computing 1 and correspondingly choose and compute a suitable cut 

inside lcs. Obviously, the overall time performance of the scheme depends crucially on 

the way that cuts are chosen and computed. As in the algorithm of [lo], we want to 

choose the cuts so as to achieve the best balance, in the sense that the total time 

required to solve both induced subproblems is about one half of the time required to 

solve the original problem. 

3. The 0 (n(n-1)) procedure length1 for the case n=m 

In this section, we assume n =m and present a simple O(n(n- 1)) time strategy 

which is complementary to that used in [9] (to keep our presentation short, some 

familiarity with [9] is assumed). The case n = m arises in the row-wise comparison of 

digitized pictures and thus has special interest. The HunttSzymanski approach 

consists of detecting the dominant matches of all available ranks by processing the 

matches in the L matrix row by row. For this purpose, a list of thresholds we will call 

row-THRESH is used. After the processing of a row, the kth entry in row-THRESH 

contains the column of the leftmost k-dominant match found so far. For example, for 

a = ahcdbb and fi = cbacba, the L-matrix would be as shown in Fig. 1. After processing 

the sixth row, the final set of row thresholds would be { 1,2,5j. The approach of [9] 

consists of updating row-THRESH row after row, based on the new matches intro- 

duced by each row. Note that m- I= 3 positions are missing from the final set of 

thresholds, namely positions 3,4, and 6. We call each such missing position a gap, and 

we call the sorted list of gaps row-COTHRESH. 

Similarly, we can define the list colu-THRESH such that the kth entry contains the 

row number of the rightmost k-dominant match found so far. For the example in 
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cbacba 
I a 
2 b 

3 c 
4 d 

5 b 
6 b 

Fig. I. The trace of wwTHRESH on an L-matrix. 

Fig. 1, the final set of column thresholds would be { 1,2,5}. The corresponding set 

colu-COTHRESH of gaps would be {3,4,6}. Clearly, the COTHRESH lists can be 

deduced from the THRESH lists, and vice versa. If m - 1~ 1, then COTHRESH lists 

give a more compact encoding of the final set of thresholds. Unfortunately, this is not 

always true at any stage of the row-by-row computation, since THRESH can be 

initially more sparse and COTHRESH correspondingly denser. However, if we 

consider only the upper-left square submatrices of the L-matrix, then we can obtain 

a suitable bound on the size of the COTHRESH lists. 

Lemma 3.1. The totul number of gapsfalling within thejirst i positions of either the ith 

row or the ith column of the L-matrix cannot he larger than m - 1. 

Proof. Observe that there must be an equal number of gaps in the ith row and in the 

ith column. Let ~1 be this number. Then the number of matches contributed to any 

LCS by the upper left ix i submatrix of the L-matrix cannot exceed i-q. Since the 

remaining portion of the L-matrix cannot contribute more than m-i matches, it must 

be ld(m-i)+(i-q)=m-q. But then m-l>q. 0 

Lemma 3.1 suggests that the length of an LCS of c( and p with 1 a) = 1 /I ) can be found 

by extending, one row and one column at a time, submatrices of the L-matrix. This is 

done by the procedure length1 which we now describe. At the ith iteration, the 

procedure scans from left to right the O(m- 1) cells of the two COTHRESH lists. If in 

the row-COTHRESH list we find a cell containing position p < i such that ai= b,, then 

[i, p] is a dominant match. Continuing the scan, the first cell (if any) is located with an 

entry larger than I +p’, where p’ is the value stored in the immediately preceding cell. 

This jump in the list of gaps represents a threshold, namely, the first threshold to the 

right of p. If such a cell is found, then for some i’<i, [i’, p’f l] is a dominant match 

having the same rank as [i,p]. Hence, gap p’+ 1 is inserted into row-COTHRESH. If 

no such cell is found, then [i, p] is the first dominant match found of its rank, and the 

cell containing i is removed from colu-COTHRESH. The processing of the colu- 

COTHRESH list is similar. 
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Note that we can easily determine the rank of any newly detected dominant match, 

as follows. Call a position in which a gap does not occur a line. Upon beginning the 

scan of a COTHRESH list, initialize Y to 1. During the scan, increment r by the 

number (zero or greater) of lines that are skipped over at each step. Then, when 

a dominant match is found, it will be of rank r. The highest rank detected is the length 

of an LCS for the two input strings. Some extra bookkeeping can be added to the 

process to support the retrieval of an LCS y at the end. This would, however, havoc 

the linearity of space. At this stage, we are interested mainly in the computation of / y /, 

and the tedious details involved in such a bookkeeping are omitted. We summarize 

the preceding discussion in the following claim. 

Theorem 3.2. Given two strings x and p with /x I= l/31 = n, the procedure length1 

computes the length of an LCS of 3 and b in time O(n(n - 1)) and linear space. 

4. Computing the length when n > m 

When n > m the argument supporting Lemma 3.1 does no longer hold. We shall see, 

however, that the basic technique of the preceding section can still be applied, with 

small changes. The main tool needed is a procedure that tests, for any integer p in the 

range [0, m], whether a and p have an LCS of length m-p. We describe first such 

a procedure, which we call length2. Later, we show that a procedure length3 for 

computing the length of an LCS of 2 and /3 in O(n(m-1)) time descends naturally 

from length2. 

Procedure length2 uses the following simple observation. Suppose strings x and 

/I have LCS length of 1. Then there is at least one such LCS, say, y, that uses only 

dominant matches. Let [i,j] be one such match. Then, [i, j] appears in the jth 

colu-THRESH list and, implicitly, in the jth colu-COTHRESH list. Let f be the 

number of gaps preceding [i,j] in column j of the L-matrix. Then the prefix of y that is 

an LCS for Zi and Bj uses precisely i -frows among the first i rows of the L-matrix. By 

an argument similar to that of Lemma 3.1, it must be that f< m - 1 since the remaining 

m-i rows cannot contribute more than m-i matches to y. In other words, no 

dominant match in an LCS can be preceded by more than m-l gaps in the cothresh 

list relative to the column where that match occurs. 

In conclusion, to test whether there is a solution of length m-p, it is sufficient to 

produce the n successive updates of the first p entries of colu-COTHRESH. By our 

preceding discussion, this takes time O(np) and linear space. At the end, either we will 

obtain a match of rank m-p or higher in this list, or we will know that no LCS of 

length at least m-p exists. We are now ready to present procedure length3, which 

simply consists of running the 0 (pn) procedure length2 with p = 0, 1,2,4,8, . . . until it 

succeeds. Procedure length2 will succeed when p is at most 2(m- 1). Thus the total 

time spent by length3 is proportional to 2n(m-l)+n(m-l)+ 1/2n(m-l)+ ... +2n+ 

n+n=4n(m-l)+n, which is O(n(m-1)). This establishes the following claim. 
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Theorem 4.1. Procedure length3 computes the length 1 of y in O(n(m-1)) time and 

linear space. 

5. The linear-space, O(n(m-1)) time algorithm KS1 

In this section, we show that length2 and length3 (length1 if m= n) can be easily 

combined with lcs to produce an LCS of the two input strings CY and 8. We call the 

resulting algorithm 1~1. In what follows we describe the structure of lcsl and 

maintain the following bounds. 

Theorem 5.1. Algorithm lcsl computes an LCS of CY and /3 in time O(n(m- 1)) and linear 

space. 

The two issues to be addressed are the computation of 1 that has to precede the 

execution of lcs and the choice and computation of a cut inside the body of lcs. We use 

length1 or length3, depending on whether m = n or m < n, to compute 1. From this, we 

know p = m - 1. This takes time O(np) and linear space. We now call lcs on E = p and 

6 =(x. Inside lcs, we will maintain that the value w = 1 b I- 1 (i.e. the value of p relative to 

the current subdomain of the problem) is always known. More precisely, we maintain 

that at the kth level of recursion, w d rp/2kl. This is achieved by computing cuts that 

always divide w in two halves. We call these cuts balanced cuts. We will show how the 

computation of all balanced cuts needed at the kth level of recursion can be carried 

out in time O(np/2k) and linear space. Before describing how this is done, we observe 

that this condition establishes, for the time bound T(n, p) of lcs, a recurrence of the 

form: T(n, p) = cnp + T(nI , np/2) + T(nz , np/2), with n, + n2 = n and c a constant. With 

initial conditions of the type T(h, 0) < bph, where b is another constant, this recurrence 

has solution O(np). 

Let n and m d n be the lengths of E and S, respectively, and let I= m - p be the length 

of an LCS for the two strings. The following lemma will be used to find a balanced cut 

for E and 6 (see Fig. 2). 

Lemma 5.2. Assume m>p32 and let p=pI+p2+p3 with pl#O, pz=O, and p3#0. 

Then, there is an LCS y = y1 y2 y3 of E and 6 for which it is possible to write E = EI E’ &3 and 

6 =6l d6’d’d3 with d and d’ symbols qf C, in such a way that: (1) y consists only of 

dominant matches; (2) for i= 1,2,3, yi is an LCS of ~~ and 6’ and 16’1-(y’/=p;; (3) let 

e and e’ be, respectively, the last symbol of E1 and the first symbol of e3. then e and d do 

not form a dominant match in L and e’ #d’. 

Proof. In the L-matrix, consider in succession the columns relative to the positions of 

6. We start with a counter initialized to zero and update it according to the following. 

Consider column 1. As is easy to check, if there is any match in column 1, then the one 

such match occupying the row of lowest index is also the unique dominant match in 
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Fig. 2. Illustrating Lemma 5.2 

column 1. If there is a solution 7 that uses a match in this column, then we pick the 

only dominant match in this column and initialize with it a string ;“. If this is not the 

case, we increment the counter by one. Assume we have handled all columns up to 

h- 1 updating the counter or extending the prefix 7’ of an optimal solution 7, 

according to the cases met. Considering column h, we increment the counter if and 

only if no match in that column could be used to extend the length of y’ by one unit in 

such a way that the extended string would still be the prefix of an optimal solution. If 

some such matches exist, we append to 3’ the one such match contained in the row of 

smallest possible index (observe that the match thus selected is a dominant match). In 

conclusion, each column at which the counter is not incremented extends the subsequ- 

ence y’ by one new dominant match, while the fact that the counter is incremented at 

some column h signals that 7’ could not have been continued into an optimal solution 

;’ had we picked a match in column h. 

Let now j be the leftmost column at which the counter reaches the value pi, and let 

i be the row containing the last one among the matches appended to 7’. We claim that 



entry [i,j] cannot be a dominant match. In fact, if [i,j] is a match, then clearly its 

rank is at least /?‘I. Assuming the rank of [i,j] higher than /y’I leads to a contradic- 

tion. In fact, in this case we can find a string q such that ~7” is an LCS of E and 6, 

“I’=;’ i ‘J’ is also an LCS of c and 6 and yet 1~7 I > / 7 1. Thus, either [i, j] is not a match or 

it is a nondominant match of rank equal to the last match of y’ used so far. We set 6’ 

equal to the prefix of 6 of length j- 1, cl equal to the prefix of c of length i, y1 =y’, 

e = E [ i] and it = 6 [ j]. These choices are consistent with the properties listed in the 

lemma for the objects involved. 

To continue with the columns of L that fall past columnj, we distinguish two cases, 

according to whether or not 1” can be extended with a match in columnj+ 1. If y’ can 

be extended with a match in columnQ+ I, let j+ 1, jf2, . . . . j+y be the longest run of 

consecutive columns such that each column contributes a new match to y’. By the 

hypothesis p1 <p, we have j + 9 < ~1 (i.e. we must be forced to skip at least one more 

column). Let i’ be the row such that [i', j+y] is a match of 1~‘. Then, by our choice of 

y the entry [i’+ l,j+s+ l] cannot be a match. We set 8’ equal to the substring of 

E that starts at position i+ 1 and ends at position i’, 6’ equal to the substring of 6 that 

startsatj+l andendsatj+y.andr’=e[i’+l]andd’=6[j+y+l].Finally,wetake 

the suffix of length 9 of 7’ as ;,‘. Clearly, these assignments satisfy the conditions in the 

claim. The choices performed so far induce a unique choice of c3, 63, and y3. By our 

construction of ;s’, there is an optimal solution 7 which has ;I’ =yl y2 as a prefix. In any 

such solution, 7’ must be followed by an LCS ofz3 and d3 of length Id3 1 -(p-p1 -p2), 

i.e. of length Id3 1 -p3, Thus the remaining conditions of the claim are also met. If ;” 

cannot be extended with a match in columnj+ 1, then the claim still holds by simply 

taking d2 and yz both empty. 0 

With p, = r p/2 1 Lemma 5.2 can be used in the computation of a balanced cut for 

E and 6, as follows. We treat the case where p is even, the case of odd p being quite 

similar. Let j andj’ =j + g + 1 be the positions in 6 of d and d’, respectively, and let i be 

the position in E of the last symbol of 8’. Clearly, [i’,j’- l] is a balanced cut. Observe 

that this cut coincides with [i,j] if ;‘2 is empty. 

We now run Irnyth2 on the ordered pair (6, E) and with parameter p/2 + 1. We use 

this run to prepare an array REACH with the property that REACH [i] contains the 

column index relative to the (pi2 + 1)th gap in the COTHRESH list at row i. Observe 

that, by condition 3 of the lemma, if i’ -t 1 is the position in E of the first symbol of Ed, 

then REACH [i’+ l] equals precisely the position j’ of d’ in 6. 

Next, we run a copy of /myth2 on the ordered pair (dR, Ed) of the reverse strings of 

the two input strings, this time with parameter p/2. An array REVREACH similar to 

REACH is built in this way. Since [i’t l,j] is not a match and we know that 

/b31-)731=p/2, then REVREACH[i’+l]=j’. 

Clearly, any index i* for which REACH [i*] = RE VREACH [i*] yields a corres- 

ponding balanced cut [i *- 1, REACH [i*]- 11. By Lemma 5.2 and the above 

discussion, at least one such index is guaranteed to exist. In conclusion, we only need 

to scan the two arrays REACH and REVREACH looking for the first index k such 
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that REACH[k] = RE VREACH [k]. Having found such an index, we can set, for our 

balanced cut [u, v], u = k - 1 and v = REACH [k] - 1 = RE VREACH [k] - 1. 

As already mentioned, the case of odd p is dealt with similarly. At the top level of the 

recursion, this process takes O(np) time and linear space. Since the parameter p is 

halved at each level, the overall time taken by the computation of cuts is still O(np). 

The recursion can stop whenever the current partition of L has an associated value of 

either the 1 or p not larger than some preassigned constant. For any such partition, an 

LCS can be found by known methods in linear space. 

6. The procedure length4 

In this section, we study a procedure length4 that computes the length of an LCS of 

sl and p in time 0 (Im log(min [s, m, 2n/m])). Since symbols not appearing in CI cannot 

contribute to an LCS, we can eliminate such symbols from /I and assume henceforth 

s<m, which eliminates the logm from the bound. The procedure length4 is a direct 

derivation of an algorithm in [3], which in turn follows a paradigm in [S]. For the 

subsequent developments, we need to describe length4 in some detail. The procedure 

consists of /sub stages which identify the /sub antichains of L in succession. It exploits 

the same criterion as in [S] to trace an antichain: if [i,j] is a k-dominant match then 

[i’,j’] with i’>i is a k-dominant match iff j’< j. At stage k only the leftmost 

k-dominant match is recorded in the array RANK. The procedure uses the following 

auxiliary structures: 
_ For each symbol of the alphabet cr, a list o-OCC of all the occurrences of cr in /I; 

- An array PEBBLE such that PEBBLE [i] (i= 1, . . . , m) contains a pointer to an 

entry of a,-OCC. At the beginning, PEBBLE [i] (i = iI, . , iz) points to the entry j of 

a,-OCC, which corresponds to the leftmost occurrence of ai in the interval [j, , . . , j,], 

if any. PEBBLE [i] is then said to be active. The procedure advances an active pebble 

until it becomes inactive, i.e. reaches an entry larger than j,, or the last entry of 

ai-OCC. By the end of the execution of length4 each pebble is set to point to the 

rightmost position that it can occupy in the interval [jr,. ., j,]. 

The algorithm uses also the function closest(a, t) which for any given character 

cr returns the pointer to the entry in the a-OCC list corresponding to the leftmost 

occurrence of rr in b which falls past h,. 

Procedure length4 (iI, i2, jr, j,, RANK, /sub) 

0 RANK[k]=O, k-l,2 ,..., (i2-iI); 

1 k=O 

2 while there are active pebbles do (start stage k+ 1) 

3 begin T=j2+l; k=k+l; 

4 for i = iI - 1 + k to iz do (advance pebbles) 

begin 
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5 t = T; 

6 if PEBBLE [i] is active and Ui-OCC [PEBBLE [i]] < T then 

(update threshold, update leftmost k-dominant match) 

7 begin T=ai-OCC [PEBBLE [i]]; RANK [k] = T end; 

(advance pebble, or make it inactive) 

8 PEBBLE [i] =ClOsest [Ui, t]; 

9 if PEBBLE [i] is active and ai-OCC [PEBBLE [i]] >j, then 

10 begin PEBBLE [i] = PEBBLE [i] - 1; make PEBBLE [i] inactive end; 

end; 

end (Isub = k). 

The procedure length4 detects all dominant matches [3]. Unlike the algorithm 

presented in [3], however, it records only the leftmost dominant match incurred for 

each k. This achieves the linear space bound. 

All the elementary steps of length4, with the exception of the executions of closest, 

take constant time. On an input of size n + m the procedure handles at most m pebbles 

during each of the lsub stages. Thus the total time spent by length4 is O(mlsub+ total 

time required by closest). The second term is obviously implementation dependent. 

One efficient implementation of closest is discussed in [3]. It rests on two auxiliary 

structures which we now proceed to describe. First, we prepare, in time 0 (n), the table 

CLOSE [ 1 . II + l] which is subdivided into consecutive blocks of size s and defined as 

follows. Letting p = j mod s (j= 1, . , n), CLOSE [j] contains the leftmost position not 

smaller thanj where c,, occurs in p. Such a table enables us to implement closest in 

time O(logs). By definition, if p=jmod s then CLOSE [ j] =closest [o,,j] and thus 

constant time suffices in this case. Otherwise, let j’ = ( j div s) s + p, where diu stands for 

the integer division operation. Two cases are possible: j’ <j or j’ >j. Assume j’ < j. If 

CLOSE [ j’] > j, then clearly CLOSE [j’] =closest Cop, j]. Otherwise, closest [u,, j] is 

not smaller than CLOSE [ j’] but not larger than CLOSE [j’ + s]. Now, there cannot 

be more than s entries in o,-OCC list between the two entries CLOSE [j’] and 

CLOSE [ j’+s]. Thus closest [a,, j] can be retrieved in logs steps by performing 

a binary search in this segment of the o,-OCC list. Similar considerations apply to the 

case j’>j. 

Next, we assume that each a-OCC list is assigned ajnger tree [3,2,6,13]. Roughly, 

a finger-tree is a balanced search tree which can be traversed in any direction. The 

finger is a pointer to any leaf in the tree. The main advantage conveyed by finger-trees 

is that, in such a tree, the search for an item displaced d positions (leaves) away from 

the current position of the finger can be carried out in O(logd) time. If the finger is 

updated to point to the last searched item at all times, then searching for m consecut- 

ive items in a tree which stores n keys is afforded in 0( JST= 1 log dk), where the intervals 

dk’s are subject to the constraint that I;= 1 dk < 2n. This sum is maximum when all 

intervals are equal, which yields the overall time bound of O(mlog(2n/m)). 
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In order to keep track of the fingers we institute a new global variable, namely, the 

array of integers FINGER [l . m]. At its inception, the procedure length4 moves all 

the fingers FINGER [iI], FINGER [il + 11, . . . . FINGER[i2], originally coincident 

with the pebbles, onto the rightmost position in the interval [jr . ..j.] that they can 

occupy on their corresponding a-OCC lists. This positioning of each finger is accomp- 

lished in 0 (min [log s, log ( j, -jr )]) time through an application of closest. Fingers 

set from different rows on the same a-OCC list merge into one single representatiae 

finger. 

During the execution of each stage of lengtk4, the (representative) finger associated 

with each symbol in [ iI i2] is reconsidered immediately following a closest query 

and the possible consequent update of the pebble (cf. lines 8-10 of lengtk4). At that 

point, we simply set: FINGER [i] =PEBBLE [il. Thus through each individual stage, 

the finger associated with each symbol moves from right to left. Each of the manipula- 

tions just described takes constant time. Finally, both fingers and pebbles are taken 

back to their initial (leftmost) position immediately after the last stage of length4 has 

been completed. Overall, this takes time O(i, - il ). We summarize some results in [3] 

in the form of the following theorem. 

Theorem 6.1. By the combined use qf FINGER and CLOSE, the procedure 

length4 computes the length lsub of an LCS of pi, . ai2 und Bj, . flj, in time 

O(Isub.(i2 - i,).min [ log s, log(2n/(i, - iI ))]) and linear spuce. 

7. The linear-space algorithm LCS2 

We now show that the procedure length4 can be cast in the divide-and-conquer 

scheme of Section 2 to produce an algorithm lcs2 that has time bound 

O(m/ log(min [s, 2n/l])) and space O(n). For 1= 0 (m) (i.e. in applications that use this 

algorithm fruitfully), this time bound is equal to that of the algorithm in [3]. 

We remove the previous assumption according to which, upon calling length4 with 

j-parameters jr, j,, the procedure always finds pebbles and fingers pointing to the 

leftmost positions in the interval [j, . j,]. We replace it with the new assumption 

that either all pebbles and fingers occupy the rightmost positions in the interval 

[j, . ..j.], or else they all occupy the leftmost one. Procedure length4 checks at its 

inception which case applies, and brings all pebbles to their leftmost positions, if 

necessary. This does not affect the time bound of the procedure. Algorithm lcsl uses 

length4 both to compute 1 prior to executing lcs and to compute cuts inside the body 

of Its. For this latter task we use a scheme similar to that of Icsl. We outline the 

method for the case of even I, the case of odd I being handled similarly. We run two 

copies of lenytk4, on the two mirror images of the problem, with the proviso that 

computation in each row is stopped as soon as a dominant match of rank l/2 is 

detected. All matches of rank l/2 so detected by each version of the procedure are 

stored in one of two associated lists. Observe that the number of such matches cannot 



exceed the total number of dominant matches detected, and this latter number cannot 

be larger than ml, the number of matches handled at most by the procedure. At the 

end, we scan the two lists looking for the first pair of matches, one from one list and 

one from the other, that form a chain. From the positions in L of these two matches, 

we can infer a balanced cut. In the present context, a cut is balanced if it identifies two 

submatrices L’ and L” of L with the property that an optimal solution 7 can be formed 

by concatenating two optimal solutions y’ and 7” entirely contained, respectively, in L’ 

and L” and both of length l/2. Leaving the details for an exercise, we concentrate on 

the following claim. 

Theorem 7.1. The procedure lcs2 jnds an LCS in time O(mllog(min[s, 211//l)) and 

spuce 0 (n). 

Proof. Each execution of length4 at the kth level of the recursion can be bounded in 

terms of “I,-’ 1/2k log(min [s, 211/m,.]), where WZ~ denotes the number of rows assigned 

to thefth subproblem. By the preceding discussion, the time needed to scan each pair 

of antichains of maximum rank in order to find a balanced cut for that pair can be 

absorbed in this bound. There are 2k calls at level k, yielding a total time: 

up to a multiplicative constant. Now it is 

Since rnf 3 1/2k, we have that the total work at this level of recursion can be bounded 

in terms of the quantity: 

m.$.log(min[ s, ~2k])<m.&.log( min[ s2k, F2k]). 

The right term can be rewritten as: 

Adding up through k = 1,2, , log 1 yields: 

from which we obtain the 0 (ml log (min [s, 2n/l]) time bound. 0 



16 A. Apostolico, S. Browne, C. Guerra 

8. Conclusion 

We have considered linear-space implementations of LCS algorithms that are faster 

than quadratic in favorable cases. Our focus was kept on implementations that would 

preserve the time complexity of the original algorithms. As noted, Ics2 is based on 

a classical paradigm established in [8] and preserves the time performance of the 

corresponding upgrade in [4]. Algorithm lcs2 is essentially similar to an earlier 

algorithm of [3], which appears to be the first linear-space algorithm produced with 

a time bound better than @(nm). While certainly an offspring of the paradigm of [9], 

the final algorithm lcs 1 bears comparatively a smaller resemblance to it. However, 

algorithm lcsl shows that the O(n(m-l)) performance in [15, lo] may descend 

somewhat naturally also from the paradigm of [9]. Also, our initial steps towards the 

design of lcsl have exposed a very simple algorithm the asymptotic worst-case 

performance of which matches that of the algorithm in [14] for strings of equal 

lengths. The time complexity of the original algorithm in [9] is O(r log n), where r is 

the total number of matching pairs of symbols between z and /I. We leave it as an 

exercise to derive a linear-space implementation of the algorithm in [9] based on the 

template procedure lcs of Section 2. A known upgrade of the Hunt-Szymanski 

algorithm [4] takes time O(mlogn+d log(2mn/d), where d is the total number of 

dominant matches. It is an interesting question whether this upgrade can be imple- 

mented in linear space without substantial denaturation of the formula expressing its 

time complexity. 
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