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ABSTRACT
Space saving techniques in computations of longest common subsequences are useful in many
applications. This paper presents twO linear space algoritluns for this problem, one taking time
O(n(m-l» and the other taking time O(ml1og(min[s,m,2nll])), where m and n (mSn) are the
lengths of the two input strings, 1 is the length of the longest common subsequences and s is the
size of the alphabet. Along the way, a very simple O(m(m-l)) algorithm is also proposed fOT

the case of strings of equal length.
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1. INTRODUCTION

Given a string 0: over an alphabet :E=(0'1,0'2"" O's). a subsequence of Ct is any slring y

that can be obtained from a by deleting zero or more (not necessarily consecutive) symbols.

The longest common subsequence (LCS) problem for input strings a=a I a2 ...am and

f3=b I b2 ···bll (mS'n) consists of finding a third string "f=C I C2"'Cl such mat 'Y is a subsequence of

a and also a subsequence of P. and y is of maximum possible length. In general, srrin,g y is not

unique.

The LCS problem arises in a number of applications spanning from text editing to molecu-

lar sequence comparisons, and it has been studied extensively over the past. General lower

bounds for the problem are time Q(nlogn) or linear time, according to whether the size S ofL is

unbounded or bounded. For unbounded alphabets, any algorithm using only "equal-unequal"

comparisons takes Q(nm) time in the worst case [AR]. The asymptotically fastest general solu-

lion takes time O(n2Ioglognllogn) [MP]. Time 6(mn) is achieved by the following dynamic

programming algorithm [HC, WF]. Let L [O...m, O...n] be an integer matrix initially filled with

zeroes. Now execute:

for £=1 to m do
for j=l to n do if a;=bj then L [i,}] = L [i -1,1 -1] + I

else L [i,n = Max[L [i,j-lj,L [i-I,j n.

The above code transfonns L in such a way that L[i,j] (l:::;;i~, l:::;;j:::;;n) contains the

length of an LCS between ai = a I a2 ...a; and ~j = b 1b2_..bj . If only the length of y is desired,

then this code is easily adapted to run in linear space. If an LCS is wanted, it becomes neces~

sary to keep a record of the decision made at every step, so that y can be retrieved at the end

through backtracking. The early 6(nm) time algorithm in [HC] achieves both a linear space

bound and the production of an LCS at the outset, through a combination of dynamic program-

ming and divide-and-conquer. Subsequent linear space algorithms such as in [AG, MY] follow

the same basic divide-and-conquer scheme as in [HC] but require less than rime 6(nm) for
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favorable inputs.

Efficient algorithmic design for the LeS problem has experienced a new wave of interest

in recent years, especially due to the need to process increasingly numerous and long inputs that

arises in molecular sequence comparisons (see, e.g., [MA, SK]). The resulting constructions

improve on the time perfonnance in cases of special interest, or use only linear space, or do

both. For instance, the algorithms in [AGI] improve on an early algorimm in [HI] for the case

of strings that differ in length considerably, and improve on the worst case perfonnance of the

strategy in [HS]. Another line of research has focused on the efficient handling of the cases

where the length of an LeS is expectedly close to the length of the shoner input string. One of

the early constructions in [HI] achieves time O{(m-l)llogn) for this case. (An additional

e(nlogs) term is [Q be added [Q all time bounds reponed here. Usually, this term is charged by

a preprocessing phase.) More recently, an alternate conc;truction requiring o«m-l)n) was pro

posed in [I\.'Y], along with another o«m-l)llogn) algorithm (it is relatively easy to check that

the second bound can be reduced to O(m(m-l)min{logs,10gm,log2nll}) by the techniques

de\'eloped in [AG!]). Linear space implementation of the 0 «m-l)n) algorithm in [NY] was

subsequently achieved in [KR], through a divide and conquer scheme mat is reminiscent of. but

not identical to that of [He]. An algorithm taking time O(ne) in terms of the quantity

c=m+n-2l was proposed in [MY]. This algorithm has expected time O(n+e2) and a nice.

though admittedly unpractical, 0 (nlogn+e 2 ) vanation. Also these strategies can be imple

mented in linear space. Since l$tn, however, then e2 = e(1l2) for n~2m. In other words. the

bound in [MY] is comparable [Q ihose in [HI, NY, KR] only in the case of strings of nearly

equal length.

In this paper, we propose additional linear space algorithms suitable for the case where [is

close to m, or m is much smaller than n. or both conditions are met. We Start by showing that,

for m=n, an O(n(n-l» algorithm of great conceptual simplicity results from inn-oducing some

kind of dualization in the classic strategy of [HS]. Equally simple extensions enable to handle

,-
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the case m5.n, in time 0 (n em-I)) and linear space. Finally, we present a linear space implemen

tation of one of the algorithms in [AG!], preserving the 0 (m/log(min[s,m, 2nlm])) time bound

of that algorithm.

2. PRELIMINARIES

The ordered pair of positions j and j of L, denoted [i,n, is a match iff Qi=bj=cr, for some

t , l::;;t::;S. If [i,n is a match, and an LCS Yi,j of 0:; and t3i has length k, then k is the rank of

u,n· The match [itn is k-dominam if it has rank k and for any other pair [i',rl of rank k

either i '>! and j'$j or j/g and j'>}. Computing the k·dominam matches (k=1,2, ...,l) is all is

needed to solve the LCS problem (see, e.g., [AG!, ID]).

It is useful [0 define, on the set of matches in L, the following partial order relation: match

[i,n precedes match [i''/J if iSi' and jSj'. Then, the LCS problem translates into the problem

of finding a longest chain in the poset of matches. Most known approaches to the LCS problem

compute a minimal amichain decomposition (refer, e.g.• to [BOD for this poset. A set of

matches having equal rank is an antichain in this decomposition. For general poselS, a minimal

ami chain decomposition is compured by flow techniques [BDl. although not in time linear in

the number of elements of the poset. The main algorithms discussed in this paper have their

natural predecessors in [HS] and [HI]. In terms of antichain decompositions. the approach of

[HI] consisTS of computing the amichains one at a rime, while thar of [HS] extends panial

antichains relative to all ranks already discovered. one step at a time. The interested reader shall

find that also the approach in [NY]. which yields bounds of 0 (n (m-I» or 0 (m (m -I)logn)

may fall into this second category.

Our algorithms achieve linear space through a divide-and·conquer scheme similar to that

of [KR]. The recurrent step of this scheme takes as input: (1) two strings E and 0 such that E is

always a substring. say. of Pand 0 is always a substring of the other string; (2) the length l of

an LCS of E and o. The task of the step is to produce an LCS of E and o. This is achieved by

•

f
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first computing a suitable cur for an LCS of E and 8 and then by applying the same scheme on

the two subdomains of the problem induced by the cut. A cut is any pair [u t v] such that an LCS

of E and 8 can be formed by concatenating an LCS of the prefixes e... and 8~ with an LCS of me

corresponding suffixes of the two strings. A more detailed description of the scheme is as fol-

lows.

Procedure [cs (E, 8, iI, i 2, j I, j2, I, LCS)
begin

if !=c or minE Iel. 101] - 1 = c for some constant c then
determine an LCS in time 0 (! E Ilo[) and space 0 (min[ IE I, 10 I])

else
begin (split the problem into subproblems)

choose a cut [u, vl, lSu'::;;lel. l::;:v::;:lol
lcs(E, 0, iI, i1+u-l, j 1, j l+v-l, II, LCS 1);
lcs(e, 8. i l+u, i2, j 1+..... j2, 12 LCS2);
LCS =LCSI II LCS2;

end

end.

The major difference between the above scheme and that in [He] is in the fact that here I

has to be computed prior to running lcs. In the following sections, we present various ways of

computing I and correspondingly choose and compute a suitable cut inside lcs. Obviously, the

overall rime perfonnance of the scheme depends crucially on the way that cuts are chosen and

computed. As in the algorithm of [KRJ, we want to choose the cms so as to achieve the best

balance, in the sense that the (otal time required to solve both induced subproblems is abom one

half of the time required to solve the original problem.

3. THE 0 (n (n-I)) PROCEDURE LENGTH! FOR THE CASE n = m

In this secDon, we assume n=m and present a simple O(n(n-l» time strategy which is

complementary to thaI used in Hum and Szymanski [HSJ (to keep our presentation ShOll, some

familiarity with [HS] is assumed). The case n=m arises in the row-wise comparison of digitized

'.
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picrures and thus has special interest. The Hum·Szymanski approach consists of detecting the

dominant matches of all available ranks by processing the matches in the L matrix row by row.

For this purpose, a list of thresholds we will call row-THRESH is used. After the processing of

a row, the k-th entry in row-THRESH contains the column of the leftmost k-dominant match

found so far. For example, for a = abcdbb and 13 = cbacba, me L-matrix would be as shown in

Figure 1. After processing the sixth row, me final set ofrow thresholds would be {l,2,5}. The

approach of [HS] consislS of updating row-THRESH row afrer raw, based on the new matches

introduced by each row. Note that m-I = 3 positions are missing from the final set of thres-

holds, namely positions 3, 4, and 6. We call each such missing position a gap. and we call the

saned list of gaps rmv·COTHRESH.

cbacba
1 2 3 456

a 1
b 2
c 3
d 4
b 5
b 6

001111

01lrr
22

1111222
111222
1f'2T'22l3l3

111212 21313

Figure 1

The trace of n)111·THRESH on an L-mamx

Similarly, we can define the list colu-THRESH such that the k-th entry contains the row

number of the rightmost k-dominant match found so far. For the example in Figure 1, the final

set of column thresholds would be {I,2,5}. The corresponding set colu-COTHRESH of gaps

would be {3,4,6}. Clearly, the COTHRESH lists can be deduced from the THRESH liSIS, and

vice versa. If m-l < I, then the COTHRESH lists give a more compact encoding of the tina! set
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of thresholds. Unfortunately, this is not always true at any stage of the row-by-row compura-

tion, since THRESH can be initially more sparse and COTHRESH correspondingly denser.

However, if we consider only the upper-left square submatrices of the L-marrix, then we can

obtain a suitable bound on the size of the COTHRESH lists.

Lemma 1. The total number of gaps falling within the first j positions of either the i-th row or

the i-th column of the L-marrix cannot be larger lhan m-l.

Proof. There must be an equal number of gaps, say q. in the j-th row and in the j-th column. If

q > m -I, then the number of matches contributed [0 any LCS by the upper left j.j suhmarrix of

the L·matrix cannot exceed i -q. Since the remaining ponien of the L-matrix cannot contribute

more than m-i matches. it must be the case that l:f (m-i) + (i-q) < m-(m-i) = l, which is a

contradiction. 0

Lemma 1 suggests that the length of an LCS of ex and 13 with 1ex 1= J131 can be found by

extending, one row and one column at a time, submatrices of the L-matrix. This is done by the

procedure length] which we now describe. At the i-th iteration, the procedure scans from left to

right the 0 (m-i) cells of the twO COTHRESH lists. If in the rCTIv-COTHRESH list we find a

cell comaining position p < i such that aj = bp , then [i,p] is a dominant match. Continuing the

scan, the first cell (if any) is located with an entry larger than l+pl, where p' is the value stored

in the immediately preceding cell. This jump in the list of gaps represents a threshold, namely,

the first threshold [0 the right of p. If such a cell is found, then for some i l < i, W,pl+l] is a

dominant match having the same rank as [i,p]. Hence, gap p'+1 is inserted into

row-COTHRESH. If no such cell is found, then [i,p] is the first dominant match found of irs

rank, and the cell containing i is removed from col-eOTHRESH. The processing of the

co[-COTHRESH lis[ is similar.
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Nore that we can easily determine the rank of any newly detected dominant match, as fol

lows. Call a position in which a gap does not occur a line. Upon beginning the scan of a

COTHRESH list, initialize r [0 1. During the scan., increment r by the number (zero or greater)

of lines that are skipped over at each step. Then, when a dominant match is found, it will be of

rank T. The highest rank detected is the length of an LCS for the two input strings. Some extra

bookkeeping can be added to the process to enable the retrieval of an LCS y at the end. This

would, howe\'er, havoc the linearity of space. At this stage, we are interested mainly in the com

pumion of lyi. and the tedious details involved in such a bookkeeping are omitted. We sum

marize the preceding discussion in the following claim.

Claim 1. Given two strings a and 13 with 1al = 1131 = n. the procedure length} computes

the length of an LCS of a and 13 in time 0 (n (n-I)) and linear space.

3. COMPUTING THE LENGTH WHEN n > m

When n > m the condition of Lemma 1 is no longer met. We shall see, however, that the

basic technique of the preceding section can still be applied, with small changes. The main tool

needed is a procedure that tests, for any integer p in the range [O,m], whether a and 13 have an

LCS of length m-p. We describe first such a procedure, which we call1ength2. Later, we show

that a procedure Iength3 for computing the length of an LCS of a and j3 in O(n(m-l)) rime

descends naturally from Iength2.

Procedure lengrh2 uses the following simple observation. Suppose strings a and 13 have

LCS length of 1. Then there is at least one such LCS. say. 'Y, that uses only dominant matches.

Let [i,}] be one such match. Then, [i,n appears in the j-th colu-THRESH list and, implicitly, in

the j-th colu-COTHRESH Jist. Letfbe the number of gaps preceding [i,}] in column j of the L

matrix. Then the prefix of)' that is an LCS for a; and I3j uses precisely i-frows among the first
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i rows of the L matrix. By an argument similar to that of Lemma I, it must be that f::;; m-l,

since the remaining m -i TOWS cannot contribute more than m-i matches to y. In other words, no

dominant match in an LCS can be preceded by more than m-[ gaps in the cothresh list relative

to the column where that match occurs.

In conclusion, [Q test whether there is a solution of length m-p, it is sufficiem to produce

the n successive updates of the first p entries of colu-COTHRESH. By our preceding discussion,

this takes time 0 (np) and linear space. At the end, either we will obtain a match of Tank m-p

or higher in this list, or we will know that no LCS of length at least m -p exists. We are now

ready to present procedure length3, which simply consists of running the O(pn) procedure

Iength2 wim p=O, 1.2,4.8•... until it succeeds. Procedure length2 will succeed when p is at

most 2{m -1). Thus the [Otal time spent by length3 is proponional to

2n{m-l)+n{m-l)+1I2n{m-l)+ ... +2n+n+n=4n{m-l)+n, which is o (n{m-l».

This establishes the following claim.

Claim 2. Procedure length3 computes the length I of y in 0 (n (m-l» time and linear

space.

4. THE LL'IEAR SPACE, O(n(m-l)) TIME ALGORITHM LCSI

In this section, we show that length 2 and length 3 (length 1 if m=n) can be easily com

bined with les [0 produce an LCS of the two input strings a and~. We call the resulting algo

rithm les 1. In what follows, we describe the stnlcture of lcs 1 and maintain the following

bounds.
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Algorithm lcs 1 computes an LCS of a: and ~ in time 0 en (m -I}) and linear

space.

The two issues to be addressed are the computation of 1 that has to precede the execution

of lcs and the choice and computation of a cut inside the body of lcs. We use length 1 or

lengrh3, depending on whether m=n or m<n, to compute /. From this, we know p=m-l. This

takes time O(np) and linear space. We now callIes on e=p and 0=0.. Inside lcs, we will

maintain that the value w = 181-/ (Le., the value of p relative to the current subdomain of the

problem) is always known. More precisely, we maintain that at the k-th level of recursion.

HI :s;; IPl2kl. This is achieved by computing cuts that always divide w in two halves. We call

these cuts balanced cuts. We will show how the computation of all balanced cuts needed at the

k-th level of recursion can be carned out in time 0 (np/2/:) and linear space. Before describing

how this is done, we observe that this condition establishes, for the time bound T(n,p) of lcs, a

recurrence of the form: T(n,p) = cnp +T(n},np/2) + T(nz,np/2), with nl + nz = n and c a

constant. With initial conditions of the type T(h, 0) s: bph, where b is another constant, this

recurr~nce has solution 0 (np).

Let nand m s: n be the lengths of E and 0, respectively, and let I = m-p be the length of

an LCS for the two strings. The following lemma will be used to find a balanced cut for E and 0

(see Fig. 2).

Lemma2 Assume m>p 2:2 and let p=p} +pz+PJ with PI :;t:O, pz=O, and P3:;t:O.

Then, there is an LCS Y= y1if of E and 0 for which it is possible to write

E: = e }e2eJ and 0 = oj doZd'oJ with d and d' symbols of:E, in such a way that: (1) "y

consisIS only of dominant matches; (2) for j = 1,2,3, ..! is an LCS of ei and 0; and

loi I - Ii I =Pi; (3) let e and e' be, respectively, the last symbol of EI and the first

symbol of E3 , then e and d do not fonn a dominant match in Land e':;t:d'.
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Proof. In the L-rnatrix, consider in succession the columns relative to the positions of o. We

stan with a counter initialized to zero and update it according to the following. Consider column

1. As is eDsy to check, if there is any match in column]. then the one such match occupying

the row of lowest index is also the unique dominant match in column 1. If there is a solution y

that uses a match in this column, then we pick the only dominant match in this column and ini

tialize with it a string y. If this is nO[ the case, we increment the coumer by one. Assume we

have handled all columm up to h-l updating the counter or extending the prefix i of an

optimal solution Y. according to the cases met. Considering column h. we increment the counter

if and only if no match in that column CQuid be used to extend me length of i by one unit in

such a way that the extended string would still be the prefix: of an optimal solution. If some

such matches exist, we append to y the one such match comained in the row of smallest possi

ble index (observe that me match mus selected is a dominant match). In conclusion, each

column at which the counter is not incremented extends the subsequence y by one new dom~

inant match, while the fact that the counter is incremented at some column h signals that y

could not have been continued imo an optimal solution yhad we picked a match in column h.

Let now j be the lefunost column at which me counter reaches me value PI, and let i be

me row comaining the last one among the matches appended to y. We claim that entry [i,j]

cannot be a dominant march. In fact, if [i,j] is a match, then clearly its rank is ar least Iy I.

Assuming the rank of [i,j] higher than Ii I leads to a conrradictioD. In fact, in this case we can

find a suing Tl such that Tli' is an LCS of E and 0, r=r'y' is also an LCS of e and 0 and yet

ITlYI > Irl. Thus, either [i,n is not a match or it is a non dominant match of rank equal to me

last match of i used so far. We set 01 equal to the prefix of 0 of length j-I, e l equal [0 me

prefix of e of length i, y1 = y', e = e[i] and d = OU]. These choices are consistent with the pro

perties listed in the Lemma for the objects involved.

To continue with the column<; of L that fall past column j, we distinguish twO cases,

according to whether or not y can be extended with a march in column j+1. If Y can be



extended with a match in column j+l, let j+l, j+2, ...• j+g be the longest run of consecutive

columns such that each column contributes a new match to y. By the hypothesis P l < p, we

have j+g<m (Le., we must be forced to skip at least one more column). Let jf be the row such

that U',j+g] is a march of y. Then, by our choice of g the entry [i'+l,j+g+l] cannot be a

match. We set e2 equal to the substring of e that stans at position i +1 and ends at position if,

fi equal to the substring of B that starts at j+l and ends at j+g, and e' =e[if+l] and

d' = BU+g + l]. Finally. we take the suffix of length g of i as i. Clearly, lhese assignments

satisfy lhe conditions in the claim. The choices performed so far induce a unique choice of

£3. B3, andy. By our construction of y, there is an optimal solution "'( which has y = 'y1i as a

prefix. In any such solution, i must be followed by an LCS of £3 and ~;J of length

IB31- (p-p r-P2). Le., of length IB31- PJ. Thus the remaining conditions of the claim are

also met. If y cannot be extended with a match in column j+l, then the claim still holds by

simply taking B2 and "'(2 both empty. 0

With P I = 1P121 Lemma 2 can be used in the computation of a balanced cut for E and B,

as follows. We treat the case where P is even, the case of odd P being quite similar. Let j and

j'=j +g +1 be the positions in B of d and d', respectively, and let i be the position in e of the last

symbol of e1. Clearly. [if,jf_I] is a balanced cut. Observe that this cut coincides with [i,j] ifr

is empty.

We now run length 2 on the ordered pair (B, e) and with parameterp/2+I. We use this run

to prepare an array REACH with the property that REACH [i] contains the column index relative

to the p!2+ l·st gap in the COTHRESH list at row i. Observe that, by condition 3 of the lemma,

if i'+l is the position in E of the first symbol of E3. then REACH[if+l] equals precisely the

position)' of d' in o.

.>
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lllustrating Lemma 2
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Next, we run a copy of length 2 on the ordered pair (fJR, f!I) of the reverse strings of the

twO input strings. this time with parameter p12. An array REFREACH similar to REACH is built

in this way. Since [i'+ I,)'] is not a match and we know that J~ J - IY31 = pl2, then

REVREACH[i'+1] =}'.

Clearly, any index j. for which REACHU"] = REVREACH[('] yields a corresponding

balanced cut U·-I, REACH[(] - I]. By Lemma 2 and the above discussion, at least one such

index is guaranteed to exist. In conclusion, we only need to scan the two arrays REACH and

REVREACH looking for the first index k such that REACH[k] =REVREACH[k]. Having

found such an index, we can set, for our balanced Cut [u,v], u = k-l and

v = REACH [kJ-l ~ REVREACH[k]-l.

As mentioned, the case of odd P is dealt with similarly. At the top level of the recursion,

this process takes O(np) time and linear space. Since the parameter p is halved at each level,

the overall time taken by the computation of cuts is still O(np). The recursion can Stop when

ever the current partition of L has an associated value of either the 1or p not larger than some

preassigned constant. For any such partition, an LCS can be found by known methods in linear

space.

5. THE PROCEDURE LENGTH4

In this section, we present a procedure length 4 that computes the length of an LCS of a

and J3 in time o(lmlog(minls,m, 2nlm])). Since symbols not appearing in a cannot contribute

to an LCS, we can eliminate such symbols from j3 and assume hencefonh s5m, which elim

inates the logm from the bound. The procedure length 4 is a direct derivation of an algorithm in

[AGl]. For the subsequent developments, we need to describe it in some detail. The procedure

consists of [sub stages which identify the lsub antichains of L in succession. It exploits the
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same criterion as in [HI] to trace an anti chain: if [i,i] is a k-dominam match then W,j'] wilh

i'>i is a k-dominanr match iff j'<j. At stage k only the leftmost k-dominam match is

recorded in the alTIlY RANK. The procedure uses the following auxiliary structures:

- For each symbol of the alphabet cr, a list (J-QCe of all the occurrences of cr in 13;

- An amy PEBBLE such mat PEBBLEUJ (i=l, ..,m) contains a pointer to an emry of

ai-aCe. At the beginning, PESBLE[i] (i=i 1 , •• ,i2) points to the the entry j of OJ-Gce,

which corresponds [Q the leftmost occurrence of OJ in the interval U1•.. ,12], if any.

PEBBLE[i] is then said to be active. The procedure advances an active pebble until it becomes

inactiYe, Le. reaches an entry larger than j2, or the last entry of aj-GCe. By the end of the

execution of length 4 each pebble is set to point to the righnnost position that it can occupy in

the interval Ul...j 2].

The algorithm uses also the function c1osest(cr,b,) which for any given character cr returns

the pointer to the entry in the cr-QCC list corresponding to leftmost occurrence of cr in ~ which

falls past bt .

Procedure length4 (il. i2. jl. j2. RANK, lsub)°RANK[k] =0, k=1,2, ...,(i2-i1);

1 k = °
2 while there are active pebbles do (stan stage k+l)
3 begin T=j2+1; k=k+l;
4 for i = i l-I+k to i2 do (advance pebbles)

begin
5 t = T;
6 if PEBBLE[i] is active and a;-OCC [PEBBLE [i]] < T then

(update threshold, update lefunos[ k-dominam match)
7 begin T = ai-OCC [PEBBLE[i]]; RANK [k]=Tend;

(advance pebble, or make it inactive)
8 PEBBLE [i]=closest[a;,t];
9 if PEBBLE [i] is active and aj-OCC [pEBBLE [i]] > j2 then
10 begin PEBBLE [i]=PEBBLE [i]-l; make PEBBLE[i] inactive end;

end;

end (isub = k).
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The procedure lengrh4 detects all dominant matches [AGl]. Unlike the algorithm

presented in [AG!], however, it records only the leftmost dominant match incurred for each k.

This achieves the linear space bound.

All the elementary steps of length 4, with the exception of the executions of closest, take

constant time. On an input of size n + m the procedure handles at most m pebbles during each

of the lsub stages. Thus the [Oral time spent by length is 0 em/sub + total time required by

closest). The second [enn is obviously implementation dependent One efficient implementation

of closest is discussed in [AG!]. It rests on two auxiliary structures which we now proceed to

describe. First, we prepare, in time 8(n), the table CWSE[l...n+l] which is subdivided into

consecutive blocks of size s and defined as follows. Letting p = j mod s U=l •...• n), CWSEfj]

contains me leftmost position not smaller than j where ap occurs in ~. The use of such table

allows ro implement closest in time o(logs). Next. we assume mat each a-OCC list is

assigned a finger tree [AGI. AP. BT. ME]. Roughly, a finget-cree is a balanced seatch cree

which can be traversed in any direction. The finger is a pointer to any leaf in me tree. The main

advantage conveyed by finger-trees is that. in such a tree. the search for an item displaced d

positions (leaves) away from the current position of the finger can be carried out in 0 (logd)

time. If the finger is updated to point to the last searched item at all times. then searching for m

rn
consecutive items in a tree which stores n keys is afforded in 0 (l: logd,l;) • where the intervals

'.1
rn

dk's are subject to the constraint that l:d{S:2rz. As is well known, this yields the overall time
'01

bound of o (mlog(2rzlm)).

In order to keep track of the fingers we institute a new global variable, namely, the array

of inregers FINGER [L.m]. At its inception, the procedure length 4 moves all the fingers

FINGER [i I], FINGER [i 1+1], ...• FINGER [i 2]. originally coincident with the pebbles, OntO the

rightmost position in the interval Ul...j2] that they can occupy on their corresponding a-oCC

lists. This positioning of each finger is accomplished in 0 (min [logs,logU2-j I)]) time through
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an application of closest. Fingers set from different rows on the same a-DCe list merge into

one single representative finger.

During the execution of each stage of length 4, the (representative) finger associated with

each symbol in [i 1...i2] is reconsidered immediately following a closest query and the possible

consequent update of the pebble (efr. lines 8·10 of lengrh4). At that point, we simply set:

FINGER [I] = PEBBLE [i]. Thus through each individual stage, the finger associated with each

symbol moves from right to left. Each of the manipulations just described takes constant time.

Finally, both fingers and pebbles are taken back to their initial (lefanost) position soon after the

last stage of length 4 has been completed. Overall, this takes time o(i2-i 1). We summarize

some results in lAGl] in the fonn of lhe following:

Claim 4. By the combined use of FINGER and CWSE. the procedure length 4 computes

the length lsub Qf an LCS of ail··· ai2 and 13/1 .... 13)2 in time

o(lsub·(i 2-i I)·min llQgs,IQg(2n/(i2-i 1))]) and linear space.

6. THE LINEAR SPACE ALGORITHM LCS2

We now show that the procedure length 4 can be cast in the divide-and-conquer scheme Qf

Section 2to produce an algorithm lcs2 that has time bound O(mnog(min[s,2nll])) and space

8(n). For 1= 8(m) (i.e., in applications that use this algorithm fruitfully), this time bound is

equal (Q that Qf the algorithm in [AG 1].

We remove the previous assumption according to which, upon calling length 4 with j

parameters j l,j 2, the procedure always finds pebbles and fingers pointing tQ the leftmost PQsi

tions in the interval U1...j2]. We replace it with the new assumptiQn that either all pebbles and

fingers occupy the righunost positions in the interval U1...j2], or else they all occupy the left

most one. Procedure length 4 checks at its inceptiQn which case applies, and brings all pebbles
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to their leftmost positions, if necessary. This does not affect the time bound of the procedure.

Algorithm lcs 1 uses length 4 both to compute I prior to executing lcs and to compute CutS inside

the body of lcs. For this latter task we use a scheme similar to thar of lcs 1. We outline the

method for the case of even /, the case of odd I being handled similarly. We run two copies of

length4, on the two mirror images of the problem, with the proviso that computation in each

row is SlOpped as soon as a dominant match of rank l/2 is detected. All matches of rank l/2 so

detected by each version of the procedure are stored in one of two associated lists. Observe lhat

the number of such matches cannot exceed the total number of dominant ma[ches detected, and

this latter number cannot be larger than mI, the number of matches handled at most by the pro-

cedure. At the end, we scan the twO lists looking for me first pair of matches. one from one list

and one from the other, mat form a chain. From the positions in L of these two matches, we can

infer a balanced cut. In the present context, a cut is balanced if it identifies two submatrices L'

and L JI of L with the property that an optimal solution y can be formed by concatenating two

optimal solutions i and y' entirely contained, respectively, in L' and L" and both of lengm

lI2. Leaving the details for an exercise. we concentrate on the following claim.

ClaimS. The procedure lcs 2 finds an LCS in time 0 (mnog(min [s, 2n/l])) and space

Sen).

Proof. Each execution of length 4 at the k-m level of the recursion can be bounded in terms of

m/lJ2k log(min[s.2nlmjJ), where mf denOles the number of TOWS assigned to the f-th subprob-

lem. By the preceding discussion, the time needed to scan each pair of anrichains of maximum

rank in order to llnd a balanced cut for that pair can be absorbed in this bound. There are 2k

calls at level k, yielding a toral time:

Z' 1 . 2nI: mrTlog(mln[s, -]).
fel 2 mf

up to a multiplicative constant. Now it is
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~

I,mF"'.
1=1

Since mFl/2k
, we have thaI the [owl work at this level of recursion can be bounded in

terms of the quantity:

I . 2n k
m'"2k"log(mm[s'-1-2 J)

The right tenn can be rewrinen as:

I ..1: 2n k
.:s;: m'2k'log(mm[s2 '-1-2 D.

I k. 2n 1 I .2n
m·-loo(2 -omm[s -J) = m·k·- + m·-loa(mm[s -J)2k eo , I 2k 2,t eo I l .

Adding up through k = 1,2•...• 10g£ yields:

logl k . 2n logl 1
mEL k + ml log(mm [s, -])L>k-'

k=12 I k=12

from which we obtain the 0 (mnog(min [s, 2nll]) time bound. 0
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