Purdue University

Purdue e-Pubs

The Longest Common Subsequence Problem Revisited

A. Apostolico
C. Guerra

Report Number:
85-543

Apostolico, A. and Guerra, C., "The Longest Common Subsequence Problem Revisited" (1985).
Department of Computer Science Technical Reports. Paper 462.
https://docs.lib.purdue.edu/cstech/462

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

THE LONGEST COMMON SUBSEQUENCE
PROBLEM REYISITED
A. Apostolico
C. Guerra

CSD-TR-543
October 1985
Revised June 1986

ABSTRACT

This paper re-examines, in a unifed framework, the problem of finding a longest common subsequence-(LCS) of two strings, and proposes simple-and-generally faster implementations for most known approaches. Let l be the length of an $L C S$ between two strings of length m and $n \geq m$, respectively, and let s be the alphabet size. The first revised strategy follows the paradigm of a previous $O(m)$ time algorithm by Hirschberg. The new version can be implemented in time $O(l m \cdot \min (\log s, \log m, \log (2 n / m)\})$, which is profitable when the input strings differ considerably in size (a looser bound for both versions is $O(m n)$). A natural offspring of this algoritimn is also presented which uses only linear space and has the same time bound, except for an additive term $O(m \log m)$. While most exiscing algorithms use linear space in order to compute only l, the only previously known algorithm compuing an LCS in linear space required never less than time $\Theta(n m)$. Another algorithm presented here improves on the Hunt-Szymanski algorithm. This latter takes time $O((r \div n) \log n)$, where $r \leq m n$ is the total number of matches between the two input strings. Such a performance is quite good $(O(n \log n))$ when $r-n$, but it degrades to $\Theta(m n \log n)$ in the worst case. On the other hand, the variation presented here is never worse than lincar-time in the product $m n$. The exact time bound derived for this variation is $O(m \log n+d \log (2 m n / d))$, where $d \leq r$ is the number of dominant matches (elsewhere referred to as minimal candidates) between the two strings. Finaily, a scheme reminiscent in part of that of Hunt-Szymanski is used to set up a natural $O(n(n-k+1)$) time algorithm suitable for similar strings of nearly equal lengths. The bounds $O(n(m-l+1)$ and $O(m(m-l+1) \log n)$ were already obtained elsewhere, though via more involved constructions. It will also be observed that the techniques developed in this paper enable to reduce the second one of such bounds to $O(m(m-l+1) \cdot \min \{\log m, \log s, \log (2 n / l)\})$, hence to $O(m(m-l+1))$ for constant alphabet size. All algorithms require an $O(n \log s)$ preprocessing that is nearly standard for the LCS problem, and they make use of simple and handy auxiliary data structures.

Key words and Phrases: Design and analysis of algorithms, Longest common subsequence, Dictionary, Finger-tree, Characteristic tree, Dynamic programming, Efficient merging of linear lists.

1. PRELIMINARIES

We consider strings $\alpha, \beta, \gamma, \ldots$ of symbols on an alphaber $\Sigma=\left(\sigma_{1}, \sigma_{2}, \cdots \sigma_{s}\right)$ of size s. A string is identified by writing $\alpha=a_{1} a_{2} \ldots a_{m}$, with $a_{i} \in \sum(i=1,2, \ldots, m)$. The length of α is m. A string $\gamma=c_{1} c_{2} \ldots c_{l}$ is a subsequence of α if there is a mapping $F:[1,2, \ldots, l] \rightarrow[1,2, \ldots, m]$ such that $F(i)=k$ only if $c_{i}=a_{k}$ and F is monotone and strictly increasing. Thus γ can be obtained from α by deleing a certain number of (not necessarily consecutive) symbols.

Let $\alpha=a_{1} a_{2} \ldots a_{m}$ and $\beta=\dot{b}_{1} b_{2} \ldots b_{n}$ be two strings on Σ with $m \leq n$. We say that γ is a common subsequence of α and β iff γ is a subsequence of α and also a subsequence of β. The longest common subsequence (LCS) prodlem for input strings α and β consists of finding a common subsequence γ of α and β of maximal length. Note that γ is not unique in general.

A dynamic programming strategy to compute the LCS of α and β in $\Theta(m n)$ time and space is readily set up [HC, WF]. Consider the integer matrix $L[0 \ldots m, 0 \ldots n]$, initially filled with zeroes. The following code transforms L in such a way that $L[i, j](1 \leq i \leq m, 1 \leq j \leq n)$ contains the length of an LCS between $\alpha_{i}=a_{1} a_{2} \ldots a_{i}$ and $\beta_{j}=b_{1} b_{2} \ldots b_{j}$.

$$
\begin{aligned}
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do if } a_{i}=b_{j} \text { then } L[i, j]=L[i-1, j-1]+1 \\
& \text { else } L[i, j]=\operatorname{Max}\{L[i, j-1], L[i-1, j]\} .
\end{aligned}
$$

The correctness of this strategy rests on the fact that the final entries of L must observe the following, easy to check, relations:

$$
\begin{aligned}
L[i-1, j] & \leq L[i, j] \leq L[i-1, j]+1 ; \\
L[i, j-1] & \leq L[i, j] \leq L\{i, j-1]+1 ; \\
L[i-1, j-1] & \leq L[i, j] \leq L[i-1, j-1]+1 .
\end{aligned}
$$

It is also easy to show that an LCS can be retrieved, from the L-matrix in final form, in $O(n)$ time. This suggests that the L-matrix may be highly redundant. More efficient algorithms try to limit the computation only to those entries of the matrix which convey essential information. In order to be more precise, we need a few additional definitions.

The ordered pair of positions i and j of L, denoted $\{i, j\}$, is a match iff $a_{i}=b_{j}=\sigma_{t}$ for some $t, 1 \leq t \leq s$. In the following, r will denote the number of distinct matches between α and β. If $[i, j]$
is a march, and an LCS $\gamma_{i, j}$ of α_{i} and β_{j} has length k, then k is the rank of $[i, j]$. The match $[i, j]$ is k-dominant if it has rank k and for any other pair $\left[i^{\prime}, j\right.$ ' $]$ of rank k either i ' $>i$ and j ' $\leq j$ or i, $\leq i$ and j ' $>j$. The total number of dominant matches will be denoted by d. Let l be the lengh of an LCS of α and β. It is seen [HI] that, for any $k \leq l$, there must be at least one k-dominant match, and that, moreover, there is at least one $\operatorname{LCS} \gamma=c_{1} c_{2} \cdots c_{1}$ such that c_{k} comesponds to a k-dominant match ($k=1,2, \ldots, I$). Thus, computing the k-dominant matches $(k=1,2, \ldots, I)$ is all is needed to solve the LCS problem. For a large or a-priori unknown alphabet, and within the decision tree model of computation where comparisons are restricted to give outcomes in $[=,=\boldsymbol{=}]$, the worst case cime lower bound for the LCS problem is $\Theta(m n)$ [AH]. The relared preprocessing charges $\Theta(n \log s)$ time and $\Theta(n)$ space.

However, it is easy to see that once all k-dominant matches are available, then $O(m)$ time suffices to retrieve γ. Most known approaches to the LCS problem require $\Theta(n+d)$ space. By contrast, the dynamic programming implementation presented in [HC] takes never more than $\Theta(n)$ space, though never less than $\Theta(m n)$ time.

As an iilustration of the concepts introduced thus far, Fig. 1 below displays the nontrivial portion of the final L-matrix for the strings $\alpha=a b c d b b$ and $\beta=c b a c b a a b a \$$, where $\$$ is a 'joker' symbol not in Σ, but matching any symbol of Σ. Entrics that correspond to matches are encircled. Emboldened circles circumscribe dominant matches, and boundaries are traced to separate regions with constant L-entry. For our convenience, we will henceforth speak of the L-matrix of α and β referring to the slightly augmented version presented below. Notice that appending $\$$ to β has the effect of transforming each instance of our problem into a corresponding instance with $r \geq m$.

61	0	c	1	1	1
$i 2$	0	1	1	1	2

Figure 1
The augmented L-matrix for the strings $\alpha=$ cócaió and $\beta=$ cjacbacioa.

The remainder of this paper is organized as a self-contained excursion through several solutions to the LCS problem, and the style of presentation is somerimes deliberately semi-tutorial. In Section 2, we present a strategy which is reminiscent of that in [HI]: only, the direction according to which matching pairs are scanned is inverted, and gain is achieved by exploiting some information on the structure of β (the longer string). The simplest preprocessing of β which makes such information available would require $\Theta(n s)$ time and space, an undesirable cost that is curbed to $\Theta(n)$ in Section 3. Our first new algorithm is also presented in that section, and it is shown there that it can be set up to run in $O(\operatorname{lm}-\min \{\log s, \log m, \log (2 n / m)\})$ time. We will show in Section 7 that this algorithm can be adapted to n n in linear space, at the expense of an extra $m \log m$ term in the above time bound. In Section 4, we revisit the Hunt-Szymanski strategy. We highlight there that an improved version of this strategy is unlikely to be obtainable through the mere rescheduling of the primitive operations contained in Hirschberg's (the expert reader might want to skip this part). We also show, however, that a simple adaptation of the Hunt-Szymanski strategy leads to a natural $O(n(n-l+1))$ time algorithm for the LCS problem. The bounds $O(n(m-l+1))$ and $O(m(m-l+1) \log n)$ were already obtained in [NY], though via more elaborate constructions. It is easily seen, however, that combining some of the techniques of this paper with the construction in [NY] yiclds a dime bound $O(m(m-l+1) \min \{\log s, \log m, \log (2 n / l)\}$, hence $O(m(m-l+1))$ if the alphabet size is a constant. Section 5 is devoted to the dissection of the original algorithm in
[HS], which is then reassembled in such a way that the sites of possible speed-ups be more apparent. Section 6 introduces a data structure similar to those recently proposed for the efficient merging of linear lists [ME, BT, BW], but better fit to the special case of our interest In this section, we give also a construction that uses such a structure to achieve a time bound of $O(m \log n \div d \log (2 m n / d))$.

2. HIRSCHBERG's STRATEGY REVISITED

We start by outlining an alternate $\Theta(m n)$ time aigorichm for the LCS of α and β. Also this algorithm accepts an $(m+1)(n \div 1)$ input L -matrix filled with zeroes. The output is again the final L-matrix. The k-dominant matches for each k are identinied as follows: the dummy pair $\{0,0\}$ is obviously a 0 -dominant match. Suppose now that all the $(k-1)$-dominant matches are known. Then the k-dominant matches can be obtained by scanning the unexplored region of the L matrix from right to left and top-down, until a stream of matches is found occurring in some row i. The leftrost such match is the k-dominant match $[i, j]$ with smallest i-value. The scan continues at next row and to the left of this match, and this process is repeated ac successive rows until all the ($k-1$)-th region has been scanned (and identified). Notice that the list of k-dominant matches, in the same order as they are produced, unambiguously encodes the lower border of the $k-t h$ region. The list (with no more than m entries) produced at some stage suffices to guide the searches involved at the subsequent stage, which highlights that linear space is sufficient if one wishes to compute only the length of ψ. (Elaborating on this idea, Hirschberg set up an algorithm [HC], different from that being discussed here, that takes linear space though never less than quadratic time to retrieve γ.)

The approach in [HI] corresponds to an efficient implementation of the schedule of operations which was just described. More precisely, the $0,1,2, \ldots, 1-t h$ regions of L are produced in succession, on the basis of the following criterion:

1) the topmost and lefmost match in the unexplored region is a dominant match;
2). if $[i, j]$ is a k-dominant match, then any other k-dominant match with i ' $>i$ must lie to the
left of $[i, j]$,i.e., $j^{\prime}<j$.
With some preprocessing on α and β. Hirschberg's algorithm performs in time $O(n l+n \log s)$ and space $O(d+n)[H I]$. Since the product of that preprocessing is necessary to our algorithm as well, we now describe it in detail. For each distinct symbol σ in α, the preprocessing consists of producing the following:
A) A list σ-OCC of all positions of β (in increasing order) winich comespond to occurrences of σ^{*}, for each $\sigma \in \Sigma$. In our case, β is always replaced by $\beta 3$, whence the last entry of any σ-OCC list is always $n+1$.
B) The count $N(\sigma)$ of all distinct occurrences of σ in β. In the following, we will retain $N(\sigma)$ exactly as defined here, i.e., without counting $\$$ as an occurrence of σ.

At most s such lists need to be produced, at a cost of $O(n \log s)$. The advantage brought about by the σ-OCC lists is twofold (refer to $[\mathrm{HI}]$ for details):

1) the identification of each region can be carried out by traveling (right to left) on such lists racher than on the rows of L, in such a way that each region is identified in $O(n+m)$ steps.
2) if $l=k$, then this circumstance can be detected at once following the identification of the k th border, since in this case none of the σ-OCC lists features non-joker matches in the unexplored region of L.

The altemate strategy by Hunt and Szymanski [HS] also makes use of the σ-OCC lists.

The σ-OCC lists can be easily allocared in $O(n)$ space in such a way that each one of them is accessible randomly.

We describe now an algorithm similar to that of Hirschberg but characterized with a bound of $O(l m+r+n \log s)$, inclusive of preprocessing. This may be better than $O(l n+n \log s)$ when $m<n$ and r is comparable to m. However, we are only interested in it as a starting point for our discussion, since both its description and evaluation are very simple.

We use an armay of integers PEBBLE [1..m], initialized to I, the role of which shall become apparent later. If $a_{i}=\sigma_{p}, \operatorname{PEBBLE}$ [i] either points to (the location of) an entry $j \leq n$ of $\sigma_{p}-O C C$, and is said to de active, or it points to (the location of) $n+1$ and is inactive.

Our algorithm consists of l stages, stage k being defined as the set of operations involved in identifying all the k-dominant matches. Let a match be k-internal ($k=1,2, \ldots, l$) if its rank is larger than k. Then stage $k, 1 \leq k \leq l$ begins with all active entries of $P E B B L E$ poining to ($k-1$)-intemal matches and ends with all active entries of PEBBLE pointing to k-internal matches. During stage k the pebbles: PEBBLE $[k], \operatorname{PEBBLE}[k+1], \ldots, P E B B L E[m]$, are considered in succession (indeed, no PEBBLE [i] with $i<k$ can be active at stage k). The k-dominant matches detected are appended to the $k-t h$ list in the array of lists RANK (through the concatenation operation ' $[1$ '). The entire process terminates as soon as there are no active pebbles left. In practice, one might proficably substicute the for loop of Algorithm 1 below with a walk cirough the list of active pebbles, thus gaining a considerable speed-up in some extreme cases. Since only deletions would take place from such a list, its maintenance does not pose special problems. However, the mere introduction of the list of active pebbles does not lead to any improvement in the time bound. Hence we elect to present the less cluttered version below. Although it is not crucial to the general paradigm around which Algorithm 1 is built, we prefer to resort from the beginning to an auxiliary table called SYMB. This table will be necessary in some of the subsequent versions of this algorithm, and it is defined as follows. $\operatorname{SYMB}[j]=k$, if $b_{j}=\sigma_{p}$ and j is the k-th entry in $\sigma_{\rho} \cdot O C C$. Thus the table SYMB cnables constant time access to the entry in the $\sigma-O C C$ list that corresponds to the symbol of β occurring at any position. We stipulate that, each time PEBBLE [$i]$ is being handied by the algorithm $(i=1,2, \ldots, m$), then $\operatorname{SYMB}[n+1]$ takes the
value $N\left(a_{i}\right)$. The table $S Y M B$ can be prepared in linear time from the $\sigma-O C C$ lists, quite easily, and we will not spend time on it. Within Algorithm 1, SYMB is used to speed up the advancement of some $P E B B L E\left[i^{2}\right]$, if $a_{i}=a_{i}$ for some $i<i^{\prime}$, and T, the threshotd, was not changed since row i.

Algorithm 1

0 for $i=1$ to m do $\operatorname{PEBBLE}[i]=1$; (initialize pebbles)
$1 k=0$
2 while there are active pebbles do (start stage $k \div 1$)
3 begin $T=n+1 ; k=k \div 1 ; R A N K[k]=\lambda$;
4 for $i=k$ to m do (advance pebbles)
begin
$5 \quad t=T$;
6 if $a_{:}-O C C[P E B B L E[i]]<T$ then
(record a k-dominant match; update threshold)
begin RANK [k]=RANK[k] || [i, $\left.a_{i}-O C C[P E B B L E[i]]\right] ;$
$T=a_{i}-O C C[P E B B L E[i]]$
end;
(advance pebble, if appropriate)
$9 \quad$ if $a_{i}=b_{\text {t }}$
10 then PEBBLE $[i]=S Y M B[t]+1$
11 else while $a_{i}-O C C[\operatorname{PEBBLE}[i]]<t$ do $\operatorname{PEBBLE}[i]=\operatorname{PEBBLE}[i]+1$
end;
end.

With each σ-OCC list visualized as stretched along each of the corresponding rows of the L-matrix, Fig. 2 depicts the positions occupied by the pebbles at the beginning of each of the stages performed by Algorithm I on the input strings of Fig. I. To illustrate the action of the algorithm, we trace its stage 1 , which produces the first boundary (consisting of all the 1 dominant matches). The algorithm starts by assigning the value ' 10 ' to both T and t, i.c., the variables which will be used to store the current and previous threshold, respectively (lines 3,5). Next, it compares the first occurrence of symbol $a=a_{1}$ in β (line 6). Such test is passed ($3<10$), whence the first 1 -dominant match is detected and appended to the list RANK[1] (line 7).

- Moreover, T is updated to the new value ' 3 ' (line 8). At this point, the algorithm tries to advance PEBBLE \{1] onto a 1 -internal match. By definition of S, a_{i} marches S. Moreover, in view of our convention, the current value of $S Y M B[10]$ is $N(a)=4$. Thus line 10 is execured following the test of line 9, with the effect of bringing $\operatorname{PEBBLE[1]~to~its~rightmost~position~on~} a-O C C$, and rendering it inactive. As Algorithm 1 proceeds to consider $a_{2}=b$, the test of line 6 prompts the detection and recording of a new 1 -dominant match on column 2 of the L-matrix. This is followed by the advancement of PEBBLE [2] which is thus brought on column 5. PEBBLE [3] is subjected to a similar treament In our example, the first three peboles provide all the dominant matches for the first stage. When PEBBLE [4] is considered, it does not pass the test of line 6 ; line 11 has no effect and this pebble is left in its inactive status. The last two pebbles are also left in their onginal position. We encourage the reader to carry out for himself the remainder of this example, with the aid of Fig. 2.
эjaュjaajas
$c \dot{b} \in c \dot{d} a \dot{b}$ a
$12-45-78-10$
2-3-4-5-6-7-8-9-10

stage 3
stage 4
cíacía aba\$
cíacíaaja\$
12345678910
12345678910

Figure 2
Pebbling the L-matrix of Fig. 1 through the four stages of Algorithm 1. The figure relative to stage $k(1 \leq k \leq 4)$ displays the initial positions of the pebbles for that stage. At this point, each active pebble falls either on a k-dominant match or on a k-intemal match.

In gencrai, it is easy to check that Algorithm 1 maintains the following invariant condition: whenever some pebble is being considered for the k-th time, then there can be no match of rank k on the same row and to the left of that pebble. In other words, if such pebble is active, then the match which it points to must be either a k-dominant match or a k-intemal match. Unlike the algorithm in [HI], Algorithm 1 uses the following heuriscic: matches whose ranks have been already determined are not reconsidered at subsequent stages.

Theorem I. Algorithm 1 takes time $O(l m+r)$
Proof.
During stage $k, m-k \div 1$ pebbles are considered in succession. Each pebble either is advanced some position to the right or it is not moved. The number of advances on one row is bounded by the numier of marches on that row, thus the total number of advances is bounded by r. A pebble is considered exactly once during each stage, thus the number of dimes a pebble can stay put is bounded by l, winich yields a total of lm .

We remark that the above strategy requires $O(l m+r+n \operatorname{logs})$ inclusive of preprocessing and $O(d)(O(m))$ space to find the LCS (the length of the LCS). If $r<l m$ and m is much smaller than n, this is better than the $O(l n+n \log s)$ in $[\mathrm{HI}]$. When r is large compared to $m l$, the strongest cause of inefficiency bccomes the inner while loop of Algorithm 1, which generates the $O(r)$ term. We devore the next section to curb this term.

3. IMPROVING EFFICIENCY

The operation of the inner while loop of Algorithm 1 is basically that of moving the $i-t h$ pebble to the leftmost position of β which is larger than the value t of the threshold which was updated last. This might involve an uncontrolled number of advancements on the a_{i}-OCC list. The information needed to move the i-th pebble is embodied in the structure of β : through the while loop we want to move the pebble to the leftmost occurrence of a_{i} in β which falls past b_{t}.

For s constant and/or smail compared to n (like, for exampie, in the analysis of molecular sequences [MA, SK]) this information can be made available by a simple preprocessing of the string $\beta \$$. We prepare the $s(n+1)$ table $\operatorname{CLOSEST}\left[\sigma_{1} \ldots \sigma_{s}, 1 \ldots n \div 1\right]$ which is illed as follows. $\operatorname{CLOSEST}\left[\sigma_{p}, n+1\right]=n+1$, for $p=1,2, \ldots, s$. For $j=1,2 \ldots, n, \operatorname{CLOSEST}\left[\sigma_{p}, j\right]=j ' \geq j$, where b_{j}. matches σ_{p} but $b_{x} \neq \sigma_{p}$ for $j<k<j$.

For example, the table CLOSEST associated with $\beta=c \dot{D} a c b a a \dot{a} a$ is as follows.

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

	c	b	a	c	b	a	a	b	a	s
a	3	3	3	6	6	6	7	9	9	10
b	2	2	5	5	5	8	8	8	10	10
c	1	4	4	4	10	10	10	10	10	10

The preparation of CLOSEST in $\Theta(s n)$ time is straightforward. For instance, it can be based on the alternative definition of CLOSEST offered by the following, equally straightforward, Lemma.

Lemma 1. Define $\operatorname{CLOSEST}\left[\sigma_{p}, n+1\right]=n+1,1 \leq p \leq s$. Then, for $j=1,2, \ldots n$, $\operatorname{CLOSEST}\left[\sigma_{p}, j\right]=j$ for p such that $\sigma_{p}=b_{j}$ and $\operatorname{CLOSEST}\left[\sigma_{p}, j\right]=\operatorname{CLOSEST}\left[\sigma_{p}, j+1\right]$ for all other values of p.

In addition to the array CLOSEST, we may also make use of the auxiliary table $S Y M B$, already introduced in connection with Algorithm 1.

With these two implements, the inner while loop can be removed from Algorithm 1, and subsituted there with the simple assignment:

$$
\operatorname{PEBBLE}[i]=\operatorname{SYMB}\left[\operatorname{CLOSEST}\left[a_{i}, t\right]\right]
$$

We refer to the algorithm obtained with this modification as Algorithm 2. Notice that Algorithm 2 does not access CLOSEST if $a_{i}=\dot{b}_{1}$.

Theorem 2. Algorithm 2 finds an LCS in time $O(l m+s n \div n$ logs $)$ and space $O(d \div s n)$.

The proof of Theorem 2 is straightforward and thus is omitred. Notice that, of the three terms in the above upper bound for the time, two are charged by the preprocessing. The processing phase charges a time at most proporional to the product $l m$. Since all dominant matches are decected during this phase, then $l m$ must be an upper bound for the number of such matches.

The term $s n$ becomes huge as s approaches m. To circumvent this, we replace the table CLOSEST with a new table which we call CLOSE [$1 \ldots n+1$], and which is regarded as subdivided into consecutive blocks of size s. Letting $p=j \bmod s(j=1, \ldots, n), \operatorname{CLOSE}[j]$ contains the leftmost position not smaller than j where σ_{p} occurs in $\beta \$$. CLOSE $[n+1]$ is set to $n+1$.

The array $C L O S E[j]$ can be obtained in time $\Theta(n)$, for instance by scanning the σ-OCC lists one at a time in succession while filling the entries of CLOSE relative to each symbol. The manipulations involved in connection with each σ-OCC list are similar to the merging of two lists, one of size π / s and the othcr of size $N(\sigma)$, the number of occurrences of σ in β. Thus each such merge involves less than $n / s+N(\sigma)$ comparisons. There are s such merges totaling less than $s(n / s)+\sum_{p} N\left(\sigma_{p}\right)=2 n$ comparisons. The total number of assignments is obviously n. We
leave the details of this construction to the reader.

We now assume that the table CLOSE has been prepared, and we let closest $\left[\sigma_{p}, j\right]$ be the function whose tabular version is the array CLOSEST discussed above.

Lemma 2. For any given p and j ($1 \leq p \leq s, 1 \leq j \leq n$), closest [σ_{p}, j] can be retrieved from $C L O S E[j]$ and from the $\sigma_{p}-O C C$ list in time O (logs).

Proof.

We prove our claim by giving an explicit strategy to idendify closest [σ_{p}, j] from p and j. First, compute $j^{\prime}=(j d i v s) s+p$, where div stands for the integer division operation. Three cases have to be distinguished according to whecher $j^{\prime}=j, j<j$ or $j^{\prime}>j$. If $j^{\prime}=j$ then $\operatorname{CLOSE}[j]=\operatorname{closest}\left[\sigma_{p}, j\right]$ by definition. Our strategy retums CLOSE $[j]$ as the answer in constant time. Next, suppose $j^{\prime}<j$. If $\operatorname{CLOSE}[j ']=j^{\prime \prime}>j$, then clearly $j^{\prime \prime}=\operatorname{closest}\left[\sigma_{p}, j\right]$. Otherwise closest $\left[\sigma_{p}, j\right]$ is not smailer than $j^{\prime \prime}=\operatorname{CLOSE}[j$ ' $]$ but not larger than $j^{\prime \prime \prime}=\operatorname{CLOSE}[j ’+s]$. Now $S Y M B[j "]$ and $S Y M B[j "]$ point to the corresponding entries in the $\sigma_{p}-O C C$ list, and there can be no more than s entries in $\sigma_{p}-O C C$ between these two entries. Thus closest $\left[\sigma_{p}, j\right]$ can be retrieved in logs steps by performing a binary search in this segment of $\sigma_{p}-O C C$. The case j ' $>j$ is handled along the same lines as the case just discussed.

We can now set up still another version of our LCS algorithm, which we call Algorithm 3. Algorithm 3 does not differ from Algorithm 2, except that the assignment:

$$
\operatorname{PEBBLE}[i]=\operatorname{SYMB}\left[\operatorname{CLOSEST}\left[a_{i}, t\right]\right]
$$

is now replaced by:

$$
\operatorname{PEBBLE}[i]=\operatorname{SYMB}\left[\text { closest }\left[a_{i}, r\right]\right]
$$

Theorem 3. Algorithm 3 finds an LCS in time $O(l m \log s+n \log s)$ and space $O(d \div n)$.
Proof.
Each call to closest charges O (logs) ime, in view of Lemma 2. The generic stage can prompt no more than m such calls, and there are precisely l stages.

If s can be regarded as a small constant, then Algorithm 3 takes time $O(\operatorname{Max}\{l m, n\})$. Thus, in paricular, the LCS probiem berween two srings of lengths m and $n=\Omega\left(m^{2}\right)$ has the same time complexity of the patrem matching problem [AU] for the same strings, except that preprocessing is applied here to the 'text' rather than to the 'pattern'. We recall that, under the assumption of constant alphabet size, the algorithm by Masek and Patterson [MP] requires $O(m n / \log n)$ time for all possible values of the ratio n / m.

If n is larger than m^{2} and s is larger than m, then limiting the preprocessing to the subset of Σ containing only those symbois which appear in α enables substitution of the logs in the bound of Theorem 3 with $\min \{\operatorname{logs}, \log m\}$. In intermediate situations, some improvement in the performance of Algorithm 3 can be gained from using searching techniques with auxiliary fingers [$\mathrm{BT}, \mathrm{BW}, \mathrm{ME}]$. The unexperienced reader shall become more familiar with such techniques as we proceed with our discussion. For the time being, it will do to mention that finger techniques obtain the result that consecutive search intervals on the same $\sigma-O C C$ list do not overlap during each individual stage.

It is not difficult to see that, with the sole use of fingers, the work at each stage can be bounded by $O(m \log (2 n / m)$), thus yielding an overall bound of $O(\operatorname{lm} \log (2 n / m)+n \log s)$. This Iatter construction has been proposed very recendy in a paper which appeared in the literature during the development of our work [HD]. However, in view of the observation, made above, conceming the cases where s is close to n and $m \ll n$, such a performance conveys some advantage on Hirschberg's only in the rather narrow spectrum of situations where, roughly speaking, $m \log (n / m)$ is small compared to n while n is small compared to m^{2}. By contrast, the
algorithm which is obtained by combined use of the restriction (to the symbols of α) of the table CLOSE and finger rechniques, performs in time $O(l m \cdot \min \{\log s, \log m, \log (2 n / m)\}+n \log s)$, which is never worse than the time bound of the algonithm in (HI), and can be better than that time bound in a wide variety of instances.

4. A SMOOTH TRANSITION AND A SIMPLE $O(n(n-l+1))$ ALGORITHM

Sometimes the number r of matches can be assumed to be small compared to m^{2} (or to the expected value of $l m$). In these cases, it is much desirable to have an algoritim whose running time is bounded by some slowly growing function of r. This observation is the basis of the LCS algorithm by Hunt and Szymanski [HS], wnich exhibits a time bound of $O((n+r) \log n)$. The Hunt-Szymanski algorichm (hereafter, HS for short) eludes the risk, inherent to Hirschberg's strategy, of wastefully reconsidering the same match many times: this is avoided by establishing, row after row, the ranks of all matches in each row. The main disadvantage of $H S$ is that its performance degenerates as r gets close to $m n$: in these cases this algorithm is outperformed by the algorithm in [HI], which exhibits a bound of $O(\ln)$ in all situations.

In this section we examine an LCS algorithm which does not quite coincide with the HuntSzymanski strategy. Our discussion will lead to a simple $O(n(n-l+1))$ algorithm, suitable for similar strings. It will also help understand better the developments of the following sections.

The Hunt-Szymanski approach consists of generaing all the k-dominant matches, row after row. Using the table CLOSE introduced in conncction with Algorithm 3 above, one might set up a strategy which looks similar to that in [HS], as follows. Let THRESH [1...m+1] be an array of thresholds, all of whose locations are initialized to the value $n+1$. .

```
Algorithm 4
for i=1 to m do
    begin PEBBLE [i]=j=1;
        while PEBBLE [i] is acrive do
        begin
        if }\mp@subsup{a}{i}{}-\mathrm{ OCC [PEBBLE [i]] < THRESH[j]
        then begin T = THRESH[j];THRESH[j]= a - OCC [PEBBLE [i]];
            record new dominant match; PEBBLE [i] = SYMB [closest { }\mp@subsup{a}{i}{},T}
            end;
        if \mp@subsup{a}{i}{}-OCC[PEBBLE [i]]=THRESH[j] then PEBBLE [i]=PEBBLE [i]\div1;
        j=j+l;
        end;
    end.
```

We leave it to the reader to recognize Algorithm 4 as nothing but a re-schediuling of the operations of Algorithm 3, and to evaluate iss complexity. He will find it not surprising that both achieve the same time bound. This schedule has some advantages on the previous one in some extreme situations.

However, Algorithm 4 does not relate to the Hunt-Szymanski strategy as closely as Algorithm 3 relates to Hirschberg's. Indeed, it neglects the basic motivation behind $H S$, namely, the efficient management of those situations where r is expected to be close to n. In fact, there is no strong necessary relation between r and the size of the list THRESH which is to be handled at any given row of L. Thus, as long as we allow an unpredictable number of elements of THRESH to be considered in connection with any row of L, it is unlikely that an algorithm with the control structure of Algorithm 4 could be time-bounded in terms of r. An algorithm with a time bound based on r should be set up as a sequence of more elementary manipulations, each one of which can be charged to a distinct match. We shall see soon that the row-by-row approach of Algorithm 4 is compatible with such an objective. Interestingly, the same cannot be said of the approach of the preceding sections [AA].

Before disposing of the scheme of Algorithm 4, we show that it subtends a natural $O(n(n-l+1))$ strategy, suitable for similar strings. We shall only outline such an algorithm, the
details of which are tedious but straightforward. Our construction is based on the following simple observations. Let $m=n$ and imagine running Algorithm $4 \alpha=a b c d b b$ and $\beta=c b a c b a$. The Lmätrix would consist then of the first six columns of the matrix of Fig. l, plus a suitable seventh column for $\$$. The final set of thresholds would be $\{1,2,5,7\}$. As can be deduced from Fig. 1, only $k=n-l=2$ positions of α are missing from this final set of thresholds, namely, the positions 3 and 4. We call each such missing position a gap, and we use COTHRESH to refer to the sorted list of gaps. Clearly, COTHRESH can be deduced from THRESH, and vice versa. If $k<n$, then COTHRESH represents a more compact encoding of the final sec of thresholds than THRESH. Unformately, this is not always true at any stage of the computation, since THRESH cin be occasionally more sparse and COTHRESH conrespondingly denser. However, it is straightorward to to see that, in general and for each vaiue of i, the total number of gaps falling within the first i positions of either the i-th row or the i-th coiumn of the L-matrix cannot be larger than k. Indeed, there must be an equal number of gaps, say k ', in the i-th row and in the i-th column. If $k^{\prime}>k$, then the matches contributed to any LCS by the upper-left $i \cdot i$ submatrix of the L-matrix cannot exceed $i-k$ '. Since the remaining portion of the L-matrix cannot contribute more than $n-i$ matches, it must be $l \leq n-i+i-k \prime<n-k$.

The above observations suggest that an LCS can be found by extending, one row and one column at a time, the partial solutions relative to all upper-left square submatrices of the Lmatrix. At the i-th iteration, we pebble from left to right the $O(k)$ cells of two COTRESH lists, one for row i and the other for column i. If the p-th cell of, say, the row-COTHRESH contains position $j<i$, and $a_{i}=b_{j}$, then $[i, j]$ is a dominant match. The p-th cell of COTHRESH is removed from that list. Continuing the scan, the first cell is located with an entry larger than $1+j$ ', where j^{\prime} is the value stored in the immediately preceding cell. Clearly, for some $i^{\prime}<i,\left[i^{\prime}, j{ }^{\prime}+1\right]$ is a dominant match having the same rank of $[i, j]$, whence gap $j^{\prime}+1$ is inserted in COTHRESH. Simple extra bookkceping enables the retricval of an LCS at the end of the process. The algorithm performs n iterations, each at a cost of $O(k)$ time.

We start now the presentation of a new impiementation of the Hunt-Szymanski strategy, which is not subject to the worst case degenerations of $H S$. Moreover, we will be able to draw for our algorithm a bound which is expressible in terms of d instead of r, namely, $O(m \log n+d \log (2 m n / d))$. Intuitively, and with reference to Algorithm 4 , this can be obtained by dynamically swapping the roles of the two lists which are merged at each row of L, namely, THRESH and $a_{i}-O C C$.

For the reader's convenience, we start our discussion by reproducing $H S$ below as Algorithm 5. Notice that $H S$ preprocesses β to obain an appropriate number of replicas of the reverse of each σ-OCC list: such lists are called MATCHLISTs in [HS].

```
Algorithm 5: 'HS'
element array }\alpha{1:m],\beta{1:n]; integer array THRESH[0:m]; list array MATCHLIST[1:m]
pointer array LINK [1:m ; pointer PTR;
begin
(PHASE 1: inicializations)
    for i=1 to m do
    set MATCHLIST[i] = {\mp@subsup{j}{1}{},\mp@subsup{j}{2}{},\ldots,\mp@subsup{j}{p}{}}\mathrm{ such that }\mp@subsup{j}{1}{}>\mp@subsup{j}{2}{}\cdots>\mp@subsup{j}{p}{}
                    and a}\mp@subsup{a}{i}{}=\mp@subsup{b}{\mp@subsup{j}{q}{}}{}\mathrm{ for }1\leqq\leq
    ser THRESH[i] =n+1 for 1\leqi\leqm;THRESH[0] = 0; LINK [0] = null;
(PHASE 2: find k-dominant matches)
    for }i=1\mathrm{ to }m\mathrm{ do
        for j on MATCHLIST[i] do
            begin
                find k such that THRESH[k-1] < j \leqTHRESH [k];
                    if j < THRESH[k] then
                        begin THRESH[k]=j;LINK[k]=newnode ( }i,j,LINK[k-1]) en
            end
(PHASE 3: recover LCS }\gamma\mathrm{ in reverse order)
    k = largest k such that THRESH[k]\not=n+1; PTR = LINK [k];
    while PTR fnull do
        begin print the match [i,j] pointed to by PTR; advance PTR end
end.
```

The principle of operation of $H S$ is transparenc: by scanning the MATCHLIST associated with the i-th row, the matches in that row are considered in succession, from right to left; through a binary scarch in the array THRESH, it is assessed whether the march being considered
represents a k-dominant match for some k. In this case the contents of THRESH [k] is suitably updated. We remark that considering the matches in reverse order is crucial to the correct operauion of $A S$ (the reãder is refered to [HS] for details). The total time spent by $H S$ is bounded by $O((r+m) \log n+n \log s)$, where the $n \log s$ ierm is charged by the preprocessing. The space is bounded by $O(d+n)$. As mentioned, this time performance is quite good whenever r is comparabie to n : in such instances, the worst case time bound becomes in fact $O(r \log n) \sim O(n \log n)$. However, this periormance degenerates to $\Theta\left(n^{2} \log n\right)$ as both r and m get close to n.

5. A MODIFIED PARADIGM FOR HS

The objective of this section is to rearrange $H S$ in a harmless way, but so that it be easier for us to distill possible sources of inefficiency. It will tum out that the new scheme can be implemented more efficiently than the original one, as we show in Section 6.

Our main modifications concem the second phase (i.e., finding k-dominant matches) of $H S$ as presented above. Slight adjustments of the preprocessing are also required. The first innovation brought about by algorithm $H S$ I below is that $H S$ I does not consider aill the marches in each row. Rather, $H S 1$ maintains, for each symbol. is associated acrive list of matches, the matches of any such list being characterized by the fact that they are not current thresholds. The second innovation consists of spotting all and only the new dominant matches consributed by any given active list by performing a number of primitive dictionary operations [AU] proportional to the number of these new dominant matches, i.e., independent of the current size of the active list involved.

As regards this second feature, a glance at Fig. 1 shows that the bold circles of our example are roughly one haif of all circles. While it is obviously always the case that $d \leq r$, there seems to be no general direct proportionality between d and r. For example, consider the following two extreme instances, both offsprings of the assumption $\alpha=\beta$. In the first extreme, we also assume that α and β both represent some permutation of the integers: thus $d=r$, but also $d=n$. In the other extreme, we set instead $\alpha=a^{n}$, i.e., both strings consist of n replicas of the same symbol a : thus $r=n^{2}$, but still $d=n$. More generally, HS I is asymptotically much faster than $H S$ whenever $r=\Theta\left(n^{2}\right)$ while $d=O(n)$. As the above bricf discussion suggests, these latter conditions are met, in particular, by pairs of nearly identical input strings. Unfortunately, there are still cases where both r and d are quadratic in the size $(m+n)$ of the input.

From now on, we shall find it more convenient for our discussion to 'pebble' the entrics, rather chan the locations, of the active lists.

Algorithm 6: 'HS1'

THRESH is the list of thresholds initially empty; each 'active' list AMATCHLIST $\left[\sigma_{p}\right], p=1,2, \ldots s$ is initialized to coincide with the corresponding σ_{p} OCC list. The primitives INSERT and DELETE have the usual meaning, except they do-nothing-if the-first=argument-is- $n+1=$ or-the-second-argument-is- Λ. SEARCH (key , LIST) retums (a pointer to) the smallest element in LIST which is not smailer than $k e y$ ($n+1$, if no suci element exists). SEARCH ($n \div i, L / S T$) retums $n+1$ without performing any action. Notice that all che searches performed within $H S 1$ terminate without success (i.e., key is not in $L I S T$). The function char (symbol) returns the element of the alphabet Σ which coincides with symbol. By convention, $\operatorname{AMATCHLIST}[\$]=\{n+1\}=\mathrm{A}$.

begin

for $i=1$ to m do
begin $\sigma=\operatorname{char}\left(a_{i}\right) ;$ PEBBLE $=$ first (AMATCHLIST $\left.[\sigma]\right): F L A G=$ true $:$
while $F L A G$ do

begin

1) $T=S E A R C H(P E B B L E, T H R E S H) ; k=\operatorname{rank}(T)$;
2) if $T=n+1$ then $F L A G=$ false;
3) INSERT (PEBBLE , THRESH); DELETE ($T, T H R E S H)$;
4) $L I N K[k]=$ newnode ($i, P E B B L E, \operatorname{LINK}[k-1]$);
5) $\sigma^{\prime}=\operatorname{char}\left(b_{T}\right)$;
6) DELETE (PEBBLE , AMATCHLIST[$\sigma]$);
7) $\operatorname{PEBBLE}=\operatorname{SEARCH}(T, \operatorname{AMATCHLIST}[\sigma])$;
8) $\operatorname{INSERT}(T, A M A T C H L I S T[\sigma])$;
end;
end;
retrieve γ as per phase 3 of $H S$;
end.

To illustrate the operacion of $H S$ 1, we may refer to Fig. 1 and interpret it as representing the product of $H S 1$ after it has processed the matches between $\beta=c b a c b a a b a$ and the symbols in the first six positions of $\alpha=a b c d b b a \ldots$. At this point, THRESH consists of $\{1,2,5,8\}$, and $\sigma_{1}=a_{7}=a$. At inis particular stage of our example, it so happens that AMATCHLIST $[a]=\{3,6,7,9\}$ coincides with the a-OCC list, i.e,, all occurrences of a in β could become new thresholds. HS 1 starts by searching for ' 3 ' in THRESH, which returns the entry ' 5 '. Since $5 \neq n+1$, then THRESH is updated so that it becomes now $\{1,2,3,8\}$ (line 3). The entry ' 3 ' is deleted from AMATCHLIST[a] (line 6). The aIgorichm now searches in AMATCHLIST [a] for the old threshold value ' 5 ', and this search recums the new PEBBLE ' 6 '
(line 7). Finally, ' 5 ' is retumed to $A M A T C H L I S T\left[\operatorname{char}\left(b_{5}\right)\right]=A M A T C H L I S T[b]$ (line 8). Thus this block terminates with $F L A G=$ true. When line 1 is executed next, this provokes the substicution in THRESH of the old entry ' 8 ' with the new entry ' 6 ', which is accompanied by the various list updates. The search of line 7 advances PEBBLE to position ' 9 '. As soon as line 1 is executed again, FLAG is set to false. This will cause the exit from the while loop soon after the necessary updates have been performed (notice that some of the updates are dummy in this case, since $T=n+1$, and that the search of line 7 is gratuitous, since $F L A G$ was set to false). As the final result of the management of a_{7}, THRESH has become $\{1,2,3,6,9\}$, while AMATCHLIST [a] stirunk to just \{7\}. On the other hand, AMATCHLIST [b] was given dack the matches '5' and ' 8 '.

In general, the correctness of $H S 1$ can be established as follows. First, we observe that, as long as we stay within the same iteration of che outer loop of $H S 1$, an item j removed from THRESH (cf: line 3) will never have to be reinserted in THRESTH. Notice that this is true irrespective of whether $[i, j]$ is a match (i.e., irrespective of whether $\sigma=\sigma$). Thus the insertion of line (8) must be executed after the search of tine (7). It is easy to check then that the inner loop of HS 1 maintains the following invariant condicion: if $P E B B L E=j \neq n+1$, then $[i, j]$ is a k-dominant match for some k, and, moreover, the first $k-1$ positions of THRESH contain values which are final for row i. As for the outer loop, after HS 1 has performed the i-th iteration, the following assertions hold.

1) The k-th entry of THRESH is the smallest position in β such that there is a k-dominant match between α_{i} and β.
2) AMATCHLIST $\left[\sigma_{t}\right](t=1,2, \ldots, s)$ contains all and only the occurrences of σ_{t} in $\beta \$$ which are not currenty in THRESH.

We are now ready to assess a time bound for $H S 1$. The preprocessing involved in $H S 1$ is quite similar to that in [HS]. The table char is thought of as produced during preprocessing, within the bound of $O(n \log s)$ charged by this latter (in fact, Algorithms 1-3 also make implicit use of some such table). Thus each subsequent reference to this table can be assumed to take
constant time. $H S 1$ takes at least $\Theta(m)$ time, since it considers each one of the m rows, in succession. Since $n+1$ appears at the end of each AMATCHLIST by initialization, then $H S 1$ spends constãit time in handling any tivial row of L, i.e., any row whose $A M A T C H L I S T$ is found to contain currently only $n+1$.

Theorem 4. In handing all nontrivial rows, Algorithm HS I performs $\Theta(d)$ searches, insertions and deletions.

Proof.
All the searches, insertions and deletions take place in the while loop (ines 1-8) controlled by FLAG . There is a fixed number of such primitives within these lines, whence it will do to snow that FLAG is true exactly d times. With our assumptions, $\sigma=\operatorname{char}\left(a_{1}\right)$ and AMATCHLIST $[\sigma]=\operatorname{char}\left(a_{1}\right)$-OCC is not empty, and the first element on this list (i.e., the leftmost match in the form [1,j]) is a 1-dominant match, as weil as the only dominant match in that List. By inicialization, FLAG is true the first time it is tested. Since THRESH is empty at this time, lines (3,4) will be executed, whence the first 1 -dominant match is recorded. The algorithm also proceeds to the update of the other lists involved, so that at the next step the contents of such lists will de consistent. Moreover, since the SEARCH of line (1) retums $n+1$, then FLAG is set to the value false, which exhausts all manipulations invoiving matches in the first row. In general, the first match on the AMATCHLIST associated with a non trivial row is certainly a k dominant match for some k. Assume that a certain number of entries of this AMATCHLIST have been processed and that: (i) the number of times that FLAG was true equals the number of dominant matches derecred so far, (ii) j identifies the last dominant match detected, and (iii) j is the only such match which has not been recorded yet. It is easy to see that $H S$ 1: locates the displacement of this match in THRESH (line 1); switches FLAG to false, if appropriate (line 2); updates the lists and records this new dominant match in LINK (lines $3-6,8$), and probes into AMATCHLIST $[\sigma]$ secking the next position to which the PEBBLE should be advanced to mark
the next dominant match (line 7, meaningful only if FLAG is true). Thus FLAG is true as long as conditions (i-iii) hold, that is, exacty for d times.

The actual time bound of $H S 1$ depends on the internal representaion which is chosen for the various lists involved. If the lists are represented as priority queues such as $2-3$ trees or $A V L$ trees [ME], then $H S 1$ runs in $O(d \log n+n \log s)$ time, inclusive of preprocessing, which reduces to $O(d \log \log n+n \log s)$ if one uses a structure better fit to the manipulation of integers [VE]. This already compares favorably with the corresponding bounds in [HS], where r figures in the place of d. One interesting observation, however, is that the sequences of insertions in eaci list constitute in fact merges of sorted linear sequences. Efficient dynamic structures are avaiable [BW,BT,ME] which suppor, say, the merging of two lists of sizes k and $f \geq k$ in time $O(k \log (2 f / k))$. This leads to speculation that the total time spent by $H S 1$ for the mergings could be bounded by a form such as $O(m \log m+d \log (2 m n / d))$. Unfortunately, it does not seem that the $O(k \log (2 f / k))$ bound still holds, with such structures, if deletions are intermixed with insertions in an uncontrolled way. Besides, the management of such structures is rather involved, and their storage requirements usually large.

It tums out that the special case which is of interest here is indced susceptible to efficient implementation on finger-trees [AP]. In what follows, however, we provide an altemate construction based on simpler structures, and thus show that the desired performance can be achieved at the expense of almost negligible complications.

6. CHARACTERISTIC TREES

We present a data structure suitable for the efficient implementation of dictionary primitives [AU,ME] on sorted subsequences S of a fixed subsequence U (the universe) of the string of integers $12 \cdots n$. We shall assume, to simplify our presentation, that the cardinality m of U is such that $m=2^{c}$ for some integer c.

Having chosen U, we associate with it a balanced and complete binary tee T_{U} with m leaves, labelled in succession with the keys in U (i.e., with an integer in $\{1,2 \ldots, n\}$). Each interior ventex- v-of T_{U} is marked-with the ordered pair of keys representing-the largest elements-of U which appear in the subtrees of T_{U} rooted at the left and right son of v, respectively (for all our purposes, this information is redundant if $m=n$: however, for uniformity of treacment, we consider it as provided in ail cases). Any choice of a subsequence S of U translates in a corresponding instantiation $T_{U}(S)$ of T_{U}, as foilows (T_{U} itseif can be regarded as $T_{U}(\phi)$, with ϕ the empty sequence). Each leari i in $T_{U}(S)$ is marked ' 1 ' if $i=S$, and ' 0 ' otherwise. Thus, the leaves of the tree become a blueprint of the characteristic function of the set S with respect io the universe U (see the figure below). In addition, each interior node is marked ' 0 ' if neither of its son nodes is marked ' 1 ', and ' 1 ' otherwise. $T_{U}(S)$ is called the U-characteristic tree associated with S or simply the C-tree of S when this raises no confusion about U. The C -tree of S requires only $2 m-1$ records (actuaily, bits when $n=m$), and it can be allocared sequentially, as any heap. Thus, for any node in a C-tree, one can cravel just as easily upward, downward or horizontally on the same level.

Figere 3
The characteristic tree of the set $S=\{7,12,20,28\}$ relative to viee set $U=$ $\{2,5, \ldots, 62\}$. All ' 0 ' marks are omitted, and range information is not reported on the deepest interior nodes. To exemplify just once, lear 53 is connected to iss characteristic node by a brolen tine.

For any element $i \in U$ which is not (is also) in S, the operation of inserting i in (or deleting it from) $T_{U}(S)$ is straightforward. The key property of $T_{U}(S)$ is that if a vertex is marked ' 1 ' (' 0 '), then all its ancestors (descendants) are aIso marked ' 1 ' ('0'). It is convenient to associate, with each leaf i of $T_{U}(S)$ such that $i \in U-S$, the characteristic node $v(i)$ for that leaf, defined as the highest ' 0 '-node on the path from i to the root. Now, to transform $T_{U}(S)$ into $T_{U}(S \cup\{i\})$, it suffices to change the marks of all vertices on the path of $T_{U}(S)$ from i to v (i) (inclusive). Likewise, to delete leaf i, travel from this leaf upward changing all marks to ' 0 ', until the firss vertex is encountered boch sons of which were previousiy marked ' 1 '. The mark of this node is left unchanged, and the son of this node through which the node isself was reached becomes the new characteristic node of i. The operation of testing for membersip in S of a key $i \in U$, though immediate, is of not much use. To compensate for this, the operation of searching is not restricted to take arguments from U. More precisely, we define the search of $i \in\{1,2, \ldots n\}$ in $T_{U}(S)$ as the function which rerums the first element j of S not smaller than i (or $n+1$, if no such element exists). We assume that any such search originates at the bottom of T_{U} and from a finger leaf f. The searching technique used requires only slight modificaions of otherwise standard searching on a finger-itee [ME] (cf. also $\{\mathrm{BT}, \mathrm{BW}]$). In short, the finger search for i in the C -tree $T_{U}(S)$ takes the same effort as the finger search for j in T_{U}, if T_{U} is regarded this time as the finger tree associated with the set U. For instance, assume that $i>f$. The search starts by climbing from leaf f toward the root, (performing transitions to right neighboring nodes, whenever appropriate) until a node v is found which is marked ' 1 ' and which subtends an interval of U the right end of which is Iarger than i. If j is not in the subtree of T_{U} rooted at v, the predecessor of j in S certainly is. Which case applies is ascertained by a straightforward downward search which is driven boch by the range and boolean information stored in each node. If the element of S retumed by this search is the predecessor of j in S, let v^{\prime} be the decpest 1 -marked right neighbor of an ancestor of v. Then j must be the leftmost element of S in the subtree of T_{U} rooted at v '. The node v ' can be casily spotted by resuming the climb from v. Altematively, this second stage could be avoided
by linking the 1 -marked leaves of $T_{U}(S)$ in a linear list.
In any case, the effort involved in the search is bounded by a constant times the number of nodes that are visited during the climb-up process. Visiting each new node corresponds to doubling the previous guess for the distance separating i from the finger in the key space U, much as it happens in an unbounded search [BY]. This observation suppors the following straightforward lemma (cf., for instance, [ME]).

Lemma 3. The search in $T_{U}(S)$ for an element which fails b positions (i.e., leaves) away from a finger takes $O(\log b)$ steps.

We now consider sequences of consecutive searches in $T_{U}(S)$, which start with the finger pointing to the lefmost leaf of T_{U}. By always bringing the finger on the key retumed by the search which was performed last, it is easy to maintain inductively that if, for the current query, $f \geq i$, then f is also the result of the search. Thus, each time a climb-up process is performed, this results in moving the finger to the right of its previous position. For k consecutive searches, the total effort is bounded by a constant times the sum

$$
\sum_{j=1}^{k} \log b_{j}
$$

where the b_{j} 's represent the widths of the various intervals, and these latter are non-overlapping, i.e., $\sum_{j=1}^{k} b_{j} \leq 2 m$. With this constraint, the above sum is maximum when all the b_{j} 's are equal, which yields a bound of $O(k \log (2 m / k))$ for the sequence of searches. The problem is more complicated when we consider instead a sequence of consecutive insertions (or a sequence of consccutive deletions), due to the fact that the climb-up is always to be performed there, for the purpose of node re-marking.

It is fortunate that a bound similar to the above can in fact be drawn also for these cases. Again, this is due to the fact that T_{U} can be regarded, say, as a special $2-3$ tree of the kind presented in [BT] (cfr. also [BW,ME]). The specialty consists of our tree having only 2-nodes. To
be more precise, we appeal to the following result in [BT].

Lemma 4. Let T be a $2-3$ tree with m leaves numbered $1,2, \ldots, m$, and let $i_{1}, i_{2}, \ldots, i_{k}$ be a subsequence of the leaves. Let $i_{0}=0$ and, $b_{j}=i_{j}-i_{j-1}+1$, for $j=1,2, \ldots, k$. Furthermore, for i and $i^{\prime}>i$, let $I\left(i, i{ }^{\prime}\right)$ be the number of nodes which are on the path from i ' to the root but not on the pach from i to che root. Finally, let

$$
p=\lceil\log m\rceil+1+\sum_{j=1}^{k} l\left(i_{j-1}, i_{j}\right) .
$$

Then p oceys the inequality:

$$
p \leq 2\left(\lceil\log m\rceil+\sum_{j=1}^{k}\left[\log b_{j}\right]\right)
$$

For any subsequence Q of U of cardinality k, the expression denoted by p is an upper bound for the process of producing $T_{U}(Q)\left(T_{U}\right)$ from $T_{U}\left(T_{U}(Q)\right)$ by orderiy insertion (deletion) of the elements of Q.

Let now U and $Q=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be subsequences of $\{1,2, \ldots, n\}$ of cardinalities m and k, respectively, and ler S be a subsequence of $\{1,2, \ldots, n\}$. With reference to $T_{U}(S)$, consider the folIowing three homogeneous series of k operations each. Each series applies a chosen primitive to all the elements of Q, in and orderly fashion. The series which are considered are: (i) the fingersearches of each of the elements of Q (where the finger is suitably initialized to point to $i_{0}=0$), (ii) the inscrtions of cach of the elements of Q, (iii) the delccions of each of the elements of Q (the two latter series being defined only when Q is also a subsequence of U).

Lemma 5. p is an upper bound for each of the series (i-iii).

Proof.

Obvious for the searches, for which the bound that was skerched above is actually tighter. Consider then the insertions. Assume that $i_{1}, i_{2} \ldots, i_{j-1}=f$ have been inserted, and let i be the leaf
marked 'I' which is the closest such leaf to the left of i_{j} ($i=0$ if no such leaf exists). It suffices to show that $i \neq f$ implies $l\left(i, i_{j}\right) \leq l\left(f, i_{j}\right)$. Now $i \neq f$ implies that $f<i$. Since the three individual paths from the root to each of f, i, and i_{j} all share a common prefix, consider the topmost node whereby this bundle of paths is split. If only one path takes the right branch out of that node, then, since $i<i_{j}$, this must be the path to i_{j}, and the assertion holds with equality. On the other hand, if two of the paths depart along the right branch then these must be the paths leading to i and i_{j}, and $l\left(f, i_{j}\right)$ is at most $l(f, i)$. But since the tree is perfectly balanced, then $l(f, i)=l\left(f, i_{j}\right)$, whence the assertion follows. An analogous argument proves the claim for the series (iii).

In view of Lemma 4, Lemma 5 can be rephrased by saying that k orderly insertions in an originally non-empty C-tree do not require more effort than in the case where the tree is initially empty. Likewise, the work involved in k orderly deletions cannot excced the effort of transforming a tre which stores exactly k elements into the empty tree. We leave it as an exercise for the reader to show that the assumprion, made at the beginning of this section, that m is a power of 2 can be levied at this point with no substantial penalty on the results presented so far. Lemma 5 does not apply to any hybrid series of dicrionary primitives. However, we shall use it to show that it works for the peculiar hybrid series which are involved in $H S 1$ at each row. Thus, we assume henceforth that all lists in $H S 1$ are implemented as C-trees, i.e., heap structured complete binary trees, and that each such tree is endowed with a suitable finger. The collective initialization of all trees takes trivially $\Theta(n)$ time.

Theorem 5. HS 1 requires $O(n \log s)$ preprocessing time and $O(m \log n+d \log (2 m n / d))$ processing time.

Proof.
It is easy to check that the preprocessing required by $H S 1$ is basically the same as that required
by $H S$, whence we can concentrate on the second time-bound. Let d_{i} denote the number of dominant matches which $H S 1$ introduces as a result of handling row i. As seen in the discussion of

Theorem 4, d_{i} searches are performed on THRESH while considering row i. Observe that the arguments of successive searches constitute a strictly increasing sequence of integers, and that the same can be said of the values returned by those searches. Thus, by Lemma 5 , the cost of all searcines on this row is bounded, up to a multiplicative constant, by $\log n+\sum_{k=1}^{d_{i}} \log b_{k}$, where the intervals \dot{b}_{k} are such that $\sum_{k=1}^{d} b_{k} \leq 2 n$. since the C-tree of THRESH contains n leaves. (Recall that, in the upper bound for the searches, the $\log n$ term is actually unnecessary.) It follows that, up to a multiplicative constant, the cotal cost on all rows is bounded by $m \log n+\sum_{k=1}^{d} \log b_{k}$, where now $\sum_{k=1}^{d} b_{k} \leq 2 m n$. With this constraint, the previous sum is maximized by choosing all b_{i} equal, i.e., $b_{i}=2 m n / d$. The claimed bound then follows at once.

It is not difficult to show that the same bound holds for the insertions and deletions performed on THRESH. We observe the following. First, the two lists of arguments for the insertions and delecions, respectively, represent increasing subsequences of the integers in $[1, n]$. Moreover, the set of items inserted into THRESH is disjoint from the set of items deleted from THRESH. The second observation enables to deal with each one of the two series separately. In other words, the total work involved in the inserions and deletions affecting THRESH at some row is not larger than the work which would be required if one performed all the deletions first, and then performed all the insertions. Thus, through an argument analogous to that used for the searches, the bound follows from Lemma 5, and from the fact that, on each row, THRESH is affected by d_{i} insertions and by a number of deletions which is at least $d_{i}-1$ and at most d_{i}.

We now turn to the primitives collectively performed on all the AMATCHLISTs invoked during the management of any single row. The key observation here is that the sum of the cardinalities of all such lists never exceeds n. In fact, there will be exactly n leaves in the forest of C -
trees which implement such lists. If the C -trees comesponding to the various AMATCHLISTS s are visualized as aligned one after the other, it is easy to adapt the same argument which was used for THRESH to the primitives affecting the coluection of these lists. Indeed, the special conditions on the searches, insertions and deletions still hold locally, on each individual list. This leads to our claimed bound, since the d_{i} insertions in THRESH correspond in fact to d_{i} searches with deletions on AMATCHLIST [σ], and an equivalent number of insertions take place in the collection of all lists.

7. A LINEAR SPACE ALGORITHM

In this section we present an algorithm, Algorithm 7, which deremines an LCS in linear space and in time equal to that of Algorithm 3 up to an additive term O ($m \log m$) [AG]. As mentioned, the only previous algorithm that computes an LCS in linear space [HC] takes never less than $\Theta(n m)$ time.

Algorithm 7 follows the same divide-and-conquer scheme of [HC]. The algorithm applies the auxiliary procedure length recursively to smaller subproblems until it obtains a trivial one. The procedure length is a straightforward adaptation of Algorithm 3: length can work on an arbitrary substrings $a_{i 1}, . ., a_{i 2}, b_{j 1}, \ldots, b_{j 2}$ of α and β, and that it does not keep track of all dominant matcies. Thus length computes only the length $l s u b$ of the LCS for that subproblem. The procedure is called by passing four parameters to it, namely, $i 1, i 2, j 1$ and $j 2$. It returns Isub and the the array RANK which contains the lefmost k-dominant match, for each $k=1, \ldots, l$. At the beginning, the procedure expects to find $\operatorname{PEBBLE}[i]$ active and pointing to the the entry j of $a_{i}-O C C$, which corresponds to the leftmost occurrence of a_{i} in the interval [j1...j2]. If the procedure finds that $\operatorname{PEBBLE}[i]$ falls outside the interval [$j 1 \ldots j 2$], then it marks this pebble dead, if it were not already such. The procedure advances the active pebbles of each row until all of them become inactive. A pebble becomes inactive as soon as cither the procedure advances it onto an entry of the associated $a_{i}-O C C$ list which is larger than $j 2$, or it attempts at advancing the pebble
past the last entry of a_{i}-OCC. When the first case applies, the pebble is retracted by one position on the list: thus by the end of the execution of length each non-dead pebble points to the right-
most position that it can occupy in the interval [j1...j2]. Following our discussion of Section 3, we implement now closest by using both the table CLOSE and appropriate fingers on the σ-OCC lists.

Procedure length (il, i2, j1, j2, RANK, Isub)
0) RANK $[k]=0, k=1,2, \ldots,(i 2-i 1)$; mark dead pebbles outside [$j 1 \ldots j 2]$;

1) $k=0$
2) while there are active pebbles do (start stage $k \div 1$)
3) begin $T=j 2 \div 1 ; k=k+1$;
4) for $i=11-1 \div k$ to $i 2$ do (advance pebbles) begin
5) $t=T$;
6) if PEBBLE $[i]$ is active and $a_{i}-O C C[P E B B L E[i]]<T$ then (update threshold, update lefmost k-dominant match)
7) begin $T=a_{i}-O C C[P E B B L E[i]] ; \operatorname{RANK}[k]=T$ end; (advance pebble, or make is inactive)
8) $\operatorname{PEBBLE}[i]=S Y M B\left[\right.$ closest $\left[a_{i}, t\right]$;
9) if $P E B B L E[i]$ is active and $a_{i}-O C C[P E B B L E[i]]>j 2$ then 10) begin PEBBLE $[i]=$ PEBBLE $[i]-1$; make PEBBLE [$i]$ inactive end; end:
end $(l s u b=k)$.

The procedure length detects all k-dominant matches, as is readily checked, although it records only the leftmost k-dominant match incurred for each k. This obtains the linear space bound.

Algorithm 7 is actually based on the four procedures length, lengthrev, lcs and lcsrev. The companion procedure of length, lengthrev, is simply a replica of length just made suitable for processing the mirror image of any subproblem on the input strings. Thus, for instance, calling lengthrev with parameters: $1, m, 1, n$, has the same effect as letting length run on the reverse of the input strings. The mirror procedure lcsrev is related to the procedure lcs, which is still to be described, in the same way. In conclusion, we only need to list lcs.

We need to make a few additional assumptions, namely:

- We stipulate that m is a power of 2 .
- We remove the previous assumption according to which, upon calling leng with j-parameters $j 1, j 2$, the procedure always finds pebbles and fingers pointing to the leftomost positions in the interval $[j 1 \ldots j 2]$. We replace it with the new assumption that either all pebbles and fingers occupy the rightmost positions in the interval [$j 1 \ldots j 2]$, or else they all occupy the leftmost one. Procedure length checks at its inception which case applies, and brings all pebbles to their leftmost posidions, if necessary. This does not affect the time bound of the procedure.

```
Algorithm 7: 'Procedure lcs'( ( m,1,n,LCS)
begin
    1) if n}=0\mathrm{ or m=1 then determine LCS in constant dime
    else(spiit the problem into subproblems)
        begin
            2) lengch (1,m/2,1,n,RANK 1,lsub 1);
            3) lengthrev (m/2\div1,m,1,n,RANK 2,lsub }2\mathrm{ );
            4) }j=f(ndmax (RANK 1,RANK 2,lsu\mp@subsup{b}{1}{\prime},lsu\mp@subsup{b}{2}{\prime},lsub)
                (determine the length Lsub of che LCS for this subproblem)
            5) lcs (m/2 m,1,j,LCS 1);
            6) lcsrev (m/2+1,m,n-j,n,LCS 2);
            7) combine the two outputs LCS 1 and LCS2;
        end;
end.
```

The function findmax determines the value $j=R A N K 1[k]$ such that, if $j^{\prime}=R A N K 2[k$ '] is the smallest entry of $R A N K 2$ which is larger than j, then $L s u b=k+k$ ' is a maximum. Thus, the first time findmax is executed, it remums $l s u b=l$, i.e., the length of any LCS of α and β. Moreover, the match $[i, j]$ with maximum $i \leq m / 2$ belongs to an LCS of the two input strings.

The function fundmax can be straightforwardly implemented in such a way as to require a number of steps proportional to $l s u b_{1}+l s u b_{2} \leq 2 l s u b$.

The correctness of lcs follows from the arguments in [HC].

Theorem 6. The procedure lcs finds an LCS in ime $O(m \log m+m l \log (\min [s, 2 n / m])$ and space $\Theta(n)$.

Proof. We consider all the execucions of length and lengthrev involved at the $k-t h$ level of recursion of our suategy, at once. Such executions are relative to consecutive substrings of α of uniform length $m /\left(2^{k}\right)$, and consecutive substrings of β. Starting from the upper-left comer of the L-matrix, each such substring of β is paired up twice with a substring of α. The upper pairing involves an execution of length, the second one an execution of lengthrev. We define a block at level k as the submatrix which is the domain of two such consccutive suipproblems.

All the executions of findmax at this level charge $O(l)$ time. Adding up for all values $1,2, \ldots, \log m$ of k yields a bound $O(l \cdot \log m)$ for the total work performed by findmax.

The execution of each length (lengthrey) can be bounded in terms of $m /\left(2^{k}\right) \cdot l_{f} \log \left(\min \left[s, 2 n \cdot 2^{k} / m\right]\right)$, where l_{f} denotes the length of the LCS associated with the generic subproblem. There are 2^{k} calls at level k, yielding a total time:

$$
\sum_{f=1}^{2^{k}} \frac{m}{2^{k}} l_{f} \log \left(\min \left[s, \frac{2 n}{m} 2^{k}\right]\right)
$$

up to a multiplicative constant. Now it is

$$
\sum_{f=1}^{z_{1}} l_{f} \leq 2 l .
$$

In fact, each l_{f} cannot be larger than the length of the solution to the corresponding block, and the sum of the 2^{k-1} such lengths cannot exceed l,i.e., the length of the global solution.

Thus we have, in conclusion, that the total work at this level of recursion can be bounded in terms of the quantity:

$$
l \cdot \frac{m}{2^{k}} \cdot \log \left(m i n\left[s, \frac{2 n}{m} 2^{k}\right]\right) \leq l \cdot \frac{m}{2^{k}} \cdot \log \left(m i n\left[s 2^{k}, \frac{2 n}{m} 2^{k}\right]\right) .
$$

The right term can be rewritten as:

$$
l \cdot \frac{m}{2^{k}} \log \left(2^{k} \cdot \min \left[s, \frac{2 n}{m}\right]\right)=l \cdot k \cdot \frac{2 m}{2^{k}}+l \cdot \frac{m}{2^{k}} \log \left(\min \left[s, \frac{2 n}{m}\right]\right)
$$

Adding up through $k=1,2, \ldots, \log m$ yields:

$$
m l \sum_{k=1}^{\log m} \frac{k}{2^{k}}+m l \log \left(\min \left[s, \frac{2 n}{m}\right]\right) \sum_{k=1}^{\log m} \frac{1}{2^{k}} .
$$

Since:

$$
\sum_{k=1}^{\log m} \frac{1}{2^{k}}=2-\frac{1}{2^{\log m}}<2
$$

and:

$$
\sum_{\dot{k}=1}^{\log m} \frac{k}{2^{\dot{k}}}=(\log m-1) \frac{1}{(2 m)}+\frac{1}{2},
$$

then we oblain the claimed $O(m \log m \div m l \log (\min [s, 2 n / m])$ dime bound.
The linear space bound foilows from an argument in \{HC\}.

8. CONCLUDING REMARKS

Any known approach to the LCS problem computes, in its own way, a minimal antichain decomposition (MAD: for this notion and related ones the reader may refer, e.g., to [BO]) for a partial order defined on the set of matches: an LCS is a longest chain in the poset of matches, and a set of matches having equal rank is an antichain. The MAD problem for posers can be solved in general by flow techniques $[\mathrm{BO}]$, although not in time linear in the number of elements of the poset.

The main algorithms discussed in this paper have their natural predecessors in [$\mathrm{HI}-\mathrm{HC}$] and [HS]. In terms of MADS, the approach of [HI-HC] consists of computing the antichains one at a time, while that of [HS] extends parial antichains relative to all ranks already discovered, one step at a time. The interested reader shall find that also the approach in [NY], which yields bounds of $O(n(m-l+1))$ or $O(m(m-l+1) \log n)$ falls into this second caregory. Moreover, it is easy to check that the second bound can be reduced to $O(m(m-l+1) \min \{\log s, \log m, \log 2 n / l\})$ by the techniques developed here.

Algorithm 1 and its companion algorithms are inherently off-line, as is the original algorithm in [HI]. Also, the best time bound obtained here with this one-antichain-at-a-time approach tums inro $O(l n)$, i.e., the bound already achieved in [HI], when the input strings have nearly equal lengths. Since $l m$ is an upper bound for d, and there are situations where $d=O(n)$ while lm $=\Theta\left(n^{2}\right)$, then Algorithm $6(H S 1)$ appears to be asymptotically faster in general than the other algorithms presented in this paper. Moreover, $H S$ 1, like $H S$ itself, can be executed on-line. On the other hand, the basic strucure of Algorithm 3 can be used to set up a linear space LCS algonithm which takes time equal to that of Algorithm 3 (when finger-searches are used), up to an additive term $O(m \log n)$. Interestingly, it does not seem that Algorithm 6 is amenable to an equivalent (i.e., time-performance-preserving) implementation in linear space. Some of the 'log's in our bounds can be reduced to 'loglog's via the techniques in [VE]. However, the corresponding improvements would not be significant. Finally, we mention that the problem of devising an $O(n \log n)$ time algorithm for the LCS of two strings, or showing than no such algorithm exists, is still open.

Acknowledgements

We are indebted to Z. Galil, K. Mehlhorn, F. P. Preparata and W. Schnyder for enlightening discussions, and to two referees for their very useful comments.

REFERENCES

[AA] Apostolico, A. Remark on Hsu-Du new algorithm for the LCS problem, Tech. rep., Purdue Univ. CS Depr., (1985, submitted for puoblication).
[AG] Apostolico, A. and C. Guerra. A fast linear space algorithm for computing longest common subsequences, Proceedings of the 23 -rd Allerton Conference, Monticello, Ill. (1985).
[AP] Apostolico, A. Improving the worst case performance of the Hunt-Szymanski strategy for the longest common subsequence of two strings, Tech. rep., Purdue Univ. CS Dept. (1985), to appear in Information Processing Letters.
[AH] Aho, A.D., D.S. Hirschberg and J.D. Ullman. Bounds on the complexity of the maximal common subsequence problem, $J A C M 23,1,1-12$ (1976).
[AU] Aho, A.V., S.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, Mass, 1976.
[BO] Bogart, K.P., Introductory Combinatorics, Pitman, 1983.
[BT] Brown, M.R., and R.E. Tajan. A representation of linear lists with movable fingers. Proceedings of the 10-th STOC, San Diego, Ca., 19-29 (1978).
[BW] Brown, M.R., and R.E. Tarjan. A fast merging algorithm, JACM 26, 2, 211-226 (1979).
[BY] Bendey, J.L., and A.C-C. Yao, An almost optimal algorithm for unbounded scarching, Inform. Process. Letters 5, 82-87 (1976).
[HD] Hsu, W.J., and M.W. Du. New algorithms for the LCS problem, JCSS 29, 133-152 (1984).
[Hil] Hirschberg, D.S. Algorithms for the longest common subsequence problem, JACM 24, 4, 664-675 (1977).
[HC] Hirschberg, D.S. A linear space algorithm for computing maximal common subsequences, CACM 18, 6, 341-343 (1975)
[HS] Hunt, J.W., and T.G. Szymanski. A fast algorithm for compuing longest common subsequences, CACM 20, 5, 350-353 (1977).
[MA] Martinez, H.M. (ed.), Mathematical and computational probiems in the analysis of molecular sequences, Bullerin of Mathematical Biology (Special Issue honoring M. O. Dayhoff) 46, 4, 1984.
[ME] Mehthom, K. Data structures and algorithms 1 : sorting and searching, Springer-Verlag, EATCS Monographs on TCS (1984).
[MP] Masek, W.J., and M.S. Paterson. A faster algorithm for computing string editing distances, JCSS 20, 18-31 (1980).
[NY] Nakatsu, N. , Kambayashi, Y. and Yajima, S. A Longest Common Subsequence Algorithm Suitable for Similar Text Strings, Acta Informatica 18, 171-179 (1982).
[SK] Sankoff, D. and J. B. Kruskal (eds.), Time warps, string edits and macromolecules: the theory and practice of sequence comparisons, Addison-Wesley, Reading (1983).
[VE] van Emde Boas, P. Preserving order in a forest in less than logarithmic time and linear space. Inf.Proc.Lett. 6, 3, 80-82 (1977).
[WF] Wagner, R. A., and M.J. Fischer, The string to string correction problem, Journal of the ACM 21, 1, 168-173 (1974).

