
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

The Longest Common Subsequence Problem Revisited The Longest Common Subsequence Problem Revisited

A. Apostolico

C. Guerra

Report Number:
85-543

Apostolico, A. and Guerra, C., "The Longest Common Subsequence Problem Revisited" (1985).
Department of Computer Science Technical Reports. Paper 462.
https://docs.lib.purdue.edu/cstech/462

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

THE LONGEST COMMON SUBSEQUENCE
PROBLEM REVISITED

A. ApoSlolico
C. Guerra

CSD·TR·543
October 1985

Revised June 1986

- 2 -

ABSTRACT

This paper fe-examines. in a unified framework, me problem of finding a longest
------commoIr"StIbsequence-CJ:;eS)-oftWo--strings;-anct-proposes--simple-and-generally-----------

faster implementations for most known approaches. Let l be the length of an
LCS between two strings of length m and n~. respectively, and let s be lhe

alphabet size. The first revised strategy follows the paradigm of a previous 0 (in)
time algoritlun by Hirschberg. The new version can be implemented in time
O(fm-min{logs,logmJog(2nlm)}), which is profitable when the inpm strings
differ considerably in size (a looser bound for both versions is 0 (mn ». A natural

offspring of this algorilhrn is also presented which uses only linear space and has

the same time bound. except for an additive term O(mlogm). \vl1ile most exist-
ing algorithms use li.1J.ear space in order to compute only l, the only previously

known algorimm computing an LCS in linear space required never less than time

8(nm). AnoIher algorirh.m. presemed here improves on the Hunt·Szymanski

algoriu.'un. This latter takes time o«r+n) logn), where r$mn is the total

number of marches berween the cwo input silings. Such a performance is quire

good (0 (n logn» when r-n, bur ir degrades to 8(mn logn) in me worst case.

On the other hand, Ihe variation presented here is never worse than linear-time in

the product mn. The exacr time bound derived for chis variarion is

o(mlogn + dlog(2mnld», where dSr is me number of dominant matches

(elsewhere referred to as minimal candidates) between che two strings. Finally, a

scheme reminiscenr in part of char of Hunt-Szymanski is used to ser up a natural

o (n (n-k+l» time algorithm suitable for similar strings of nearly equal lengths.

The bounds 0 (n (m-l+l) and 0 (m (m -1+l)logn) were already obtained else-

where, though via more involved constructions. It will also be observed mar the

techniques developed in lhis paper enable to reduce the second one of such

bounds to 0(m(m-l+l)-min{10gm,10gs,log(2nll)}), hence [0 O(m(m-l+l»
for constan[alphabet size. All algoritluns require an 0 (n logs) preprocessing thar

is nearly standard for che LCS problem, and they make use of simple and handy

auxiliary data structures.

Key words and Phrases: Design and analysis of algoritluns, Longest common subsequence,

Dictionary, Finger-tree, Characteristic tree, Dynamic program

ming, Efficient merging of linear lists.

- 3 -

1. PRELIlVIINARIES

We consider strings a.~.y.... of symbols on an alphabec L=(O'I,O'Z•... as) of size s. A string

is identified by writing rJ;::=atQZ .••am. with ai E L (i 1.2•... ,m). The length of a is m. A string

~f=CIC2"'C/ is a subsequence of a if there is a mapping F: [1,2, ...,1] --7 [1,2 •... .m] such that

F(i)=k only if Ci=ak and F is monotone and snicdy increasing. Thus y can be obtained from a

by deleting a cenain number of (not necessarily consecutive) symbols.

Let a.=a lQZ...am and /3=b Ib 2...b,. be two strings on L with m~n . We say that ris a common

subsequence of a. and ~ iff Y is a subsequence of a and also a subsequence of~. The longest com·

man subsequence (LCS) problem for input strings a and ~ consists of finding a common subse-

quence yof a and ~ of maximal length. Note mat "(is not unique in general.
. .

A dynamic programming srrategy to compUle me LCS of a and ~ in 8Cmn) time and space

is readily set up [He, WF]. Consider me integer matrix L [D...m ,D...n J, initially filled wim zeroes.

The following code uansforms L in such a way mat L [i ,j] (l$:i 9n ,1~j:0l) comains me length

for i=l to m do
for j=l ton doifai=bj thenL[i,j] =L[i-l,j-l] + 1

else L [i ,j] = Max{L [i ,j-I],L [i-I,jJ),

The correcmess of this smuegy res[S on [he fact that the final emries of L must observe lhe

following, easy lO check, relations:

L [i-I,j] ~ L [i ,j] ~ L [i -I ,j]+I;

L [i ,j-I] ~ L[i ,j] ~ L[i ,j-I]+I;

L[i-I,j-I] ~ L[i ,j] ~ L[i-I,j-I]+l.

It is also easy to show mat an LCS can be retrieved, from me L-matrix in fmal fonn, in

O(n) time. TItis sugges[S lhat the L-matrix may be highly redundant. More efficient algorithms

try to limit the computation only to those emries of the malrix which convey essemial informa-

tion. In order [0 be more precise, we need a few addilional definiLions.

- 4 -

The ordered pair of positions i and j of L. denmed [i ,j], is a match iff aj=bj=o/ for some

t, lSt5s. In the following. r will denote Lhe number of distinct matches be[Wcen a and 13. If [i,j]

is a malch. and an LCS IiJ of Cl,: and 13j has length k. then k is me rank of [i Ii], The match [i.j]

is k-dominanr if it has rank k and for any orner pair (i'.j '] of rank k either i' >i and j' :s;: j or i'

::; i and j' >j . The total number of dominant matches will be denoted by d. Let [be the lengrh

of an LCS of a and 13. It is seen [HI] !.hat, for any k '.fl, there must be at least one k -dominant

match, and that, moreover, mere is at least one LCS y =c LC2 ... c/ such mat Ck corresponds to a

k-dominam march (k=1,2, ... ,1). Thus, computing the k·dominam matches (k=l,2, ... ,l) is all is

needed to solve the LCS problem. For a large or a-priori unknown alphabet. and within the deci

sion tree model of compmation where comparisons are resU'ictcd to give oU[comes in [=,;:::J, me

worst case time lower bound for me LCS problem is S(mn) [AH]. The relmed preprocessing

charges Sen logs) time and Sen) space.

However, it is easy to see that once aU k-dominant matches are available, then Oem) lime

suffices to retrieve y. Most known approaches to the LCS problem require Sen + d) space. By

contrast, the dynamic programming implementation presented in [He] takes never more than

Sen) space, though never less than 8(mn) time.

As an illustration of the concepts introduced thus far, Fig. I below displays the nontrivial

portion of the final L~maaix for the strings a;::.abcdbb and ~bacbaaba$, where $ is a 'joker'

symbol not in L, but matching any symbol of L. Entries that correspond to matches are encircled.

Emboldened circles circumscribe dominant matches, and boundaries are traced to separate

regions with constant L-enuy. For our convenience, we will hencefonh speak of the L-matrix of

a; and ~ referring to the slightly augmented version presented below. Notice that appending $ to

~ has the effect of lfansforming each instance of our problem into a corresponding instance wilh

,';!m .

~DCCDCc:.::J!! S
1 2 3 4 5 6 7 8 9 10

OGlll'Q;lll'l'

?~"I 0
1 - ~ ~<6-2lll,0· I - 2 - ~ 2 2l2)

___________----:""-":;4-\.1.1' 1 2 2."'2~2~2-.2~~3lt. _
05 11~2 Z Z(D3 3®3
06 11~Z 2Q~3 3 4. 4~

Figure 1
The augme!Hed L-matrV.: for the strings Ct. = abcdbb and J3 = cbacbaaba.

The remainder of this paper is organized as a self-contained excursion through several solutions

[0 the LCS problem, and the style of presentation is sometimes deliberately semi-tutOrial. In See-

tion 2, we present a strategy which is reminiscent of that in [HI]: only, the direction according to

which malChing pairs are scarmed is invened, and gain is achieved by exploiting some infonna-

tion on the structure of ~ (the longer string). The simplest preprocessing of Pwhich makes such

infonnation available would require B(ns) time and space, an undesirable cost that is curbed to

B(n) in Section 3. Our first new algorithm is also presented in that section, and it is shown there

that it can be set up to run in 0 (1m ·min{logs ,logm log(2n/m)}) time. We will show in Section

7 that this algoritlun can be adapted to run in linear space, at the expense of an extra mlogm term

in the above time bound.In Section 4, we revisit the Hum-Szymanski strategy. We highlight there

that an improved version of this strategy is unlikely to be obtainable through lhe mere reschedul-

ing of the primitive operations contained in Hirschberg's (the expert reader might want to skip

this pan). We also show, however, that a simple adaptation of the Hunt-Szymanski str.ltegy leads

to a natural o(n(n-l+l» lime algorithm for the LCS problem. The bounds O(n(m-l+l) and

o (m (m -l+l)logn) were already obtained in [NY], though via more elaborate constructions. It is

easily seen. however, that combining some of the teclutiques of this paper with the construction

in [NY] yields a lime bound o(m(m-l+l)min {logs ,logm ,log(2n/l)}, hence O(m(m-l+l» if

the alphabet size is a constant. Seclion 5 is devoted to the dissection of the original algorithm in

-6-

[HS], which is then reassembled in such a way that the sites of possible speed-ups be more

apparent. Section 6 introduces a data suucrure similar to !.hose recently proposed for the efficient

merging of linear lists (ME, BT. BW], but better fit to the special case of our intcreSl In this sec

tion, we give also a construction that uses such a strucone to achieve a time bound of

O(mlogn -;- dlog(2mnld».

2. lllRSCHBERG's STR.>,.TEGY REVISITED

We stan by outlining an alternate 8(mn) time algoriilim for the LCS of a and p..j,jso this

algorithm accepts an (m+l)(n+l) input L·matrix filled with zeroes. The output is again the final

L-matrix. The k-dominam matches for each k are identified as follows: !:he dummy pair [0,0] is

obviously a O-dominam match. Suppose now mat all me (k-l)-dominam matches are known.

Then the k·dominam matches can be obtained by scanning the unexplored region of the L

manix from right to left and top-down, umil a stream of matches is found occurring in some row

i. The leftmost such match is the k-dominant match [i ,j] with smallest i-value. The scan contin

ues at next row and to the left of this match, and this process is repemed at successive rows until

all the (k-1)-th region has been scanned (and identified). Notice that the list of k-dominant

matches, in the same order as they are produced, unambiguously encodes the lower border of the

k-rh region. The list (with no more than m entries) produced at some stage suffices to guide the

searches involved at the subsequent stage, which highlights that linear space is sufficient if one

wishes to compute only the length of y. (Elaborating on this idea, Hirschberg set up an algorithm

[He]. different from that being discussed here, lhat takes linear space though never less than

quadratic time to retrieve y.)

The approach in [HI] corresponds to an efficient implementation of the schedule of opera

tions which was just described. More precisely, the 0,1,2,...•1-rh regions ofL arc produced in suc

cession, on me basis of the following criterion:

- 7 -

1) the topmost and lefunost match in the unexplored region is a dominant match;

2) if [i ,i] is a k -dominant match, then any other k -dominant match with i' >i must lie to the

left of [i ,j] ,i.e., j' <j.

WitlJ. some preprocessing on a. and p. Hirschberg's algorithm performs in time 0 (n/+n logs) and

space 0 Cd + n) [HI]. Since the product of um preprocessing is necessary to our algorithm as

well. we now describe it in detail. For each distinct symbol cr in a.. the preprocessing consists of

produc~g u'1e following:

A) A list a-GeC of all positions of p (in incre3Sing order) which correspond [0 occ:..:rrences

of crt, for each cr E 2:. In our case" pis always replaced by 13S. whence the last enrry of any

a-Gec list is always n+1.

B) The count N (0) of all distinct occurrences of (J in p. In the following, we will retain N (0')

exactly as defined here, Le.• without counting $ as an occurrence of cr.

At most s such lists need to be produced, at a cost of o(nlogs). The advantage brought

about by the cr~OcC lists is twofold (refer to [HI] for details):

1) the identification of each region can be c:mied out by traveling (right to left) on such lists

rnther than on the rows of L. in such a way that each region is identified in D (n +m) steps.

2) if l =k , then this circumstance can be detected at once following the identification of the k-

ch border, since in this case none of the a-Dec lists features non-joker matches in the

unexplored region of L.

The alternate suategy by Hunt an~ Szymanski [HS] also makes use of the a-DeC lists.

hne a-OCC lists can be easily allOCaIed in 0 (n) space in such. a way that each. one of them is accessible
randomly.

- 8 -

We describe now an algorithm similar (0 that of Hirschberg bm characterized wim a bound

of 0 (lm+r+nlogs), inclusive of preprocessing. This may be better man 0 (In+n logs) when

m <n and r is comparable [0 m. However, we are only imerested in it as a starting point for our

discussion. since bOlh its description and evaluation are very simple.

We use an array ofimegers PEBBLE [1..m 1, initialized to 1, the role of which shall become

appare~[later. If aj=Op' ?EBBLE[jJ eirher points to (the locmion of) an eorry j'.£.n of crp-OCC,

and is said to be active, or it points to (the location of) n+l and is inactive.

OUf algorithm consists of I srages. smge k being defined as the set of operations involved in

identifying all the k ·dominam matches. Let a match be k-inrernal (k=1,2•...•I) if i[S rank is

larger man !c. Then stage k, 1 .$ k $! begins wiIh all active entries of PEBBLE pointing to

(k-I)-internal matches and ends with all active emries of PEBBLE poiming to k-internal

matches. During stage k the pebbles: PEBBLE [k], PEBBLE [k+I], ...• PEBBLE [m], are, con

sidered in succession (indeed, no PEBBLE [i 1 with i <k can be active at stage k). The k -dominant

matches detected are appended to the k -ch list in the array of lists RANK (through me concatena

tion operation' II'). The entire process terminates as soon as there are no active pebbles left. In

practice, one might profitably substitute the for loop of Algorichm I below with a walk lhrough

the list of active pebbles. thus gaining a considerable speed-up in some extreme cases. Since only

deletions would take place from such a list, its maintenance does not pose special problems.

However, the mere introduction of lhe list of active pebbles does not lead to any improvement in

the time bound. Hence we elect to presem the less cluttered version below. Allhough it is not CIU

cial to the general paradigm around which Algorichm 1 is built, we prefer to resort from the

beginning to an auxiliary table called SYMB. This table will be necessary in some of the subse

quem versions of this algorilhm. and it is defined as follows. SYMB Ul =k, if bj =crp and j is

the k -ch entry in crp ·Gee . Thus the table SYMB enables constant time access to the enuy in the

cr-Gee list that corresponds to lhe symbol of (3 occurring at any position. We stipulate that, each

time PEBBLE [i] is being handled by the algorithm (i=1,:!, ... ,In), then SYMB [n +1] takes the

- 9 -

value N(aj). The table SYMS can be prepared in linear time from me a-DCC lis[S, quite easily,

and we will not spend time on it. Within Algorithm 1, SYMB is used to speed up the advance-

since row i.

Algorithm 1
o for i = 1 1.0 m do PEBBLE[i] = 1; (initialize pebbles)
1 k = 0
2 while there are active pebbles do (stan stage k-i-l)
.) begin T=n+l; k=k+l; RANK[k]=A;
4 for i = k to m do (advance pebbles)

beg1n
5 r = T;
6 ifa,-OCC[PEBBLE[i]] < T lhen

(record a k-dominant match; update threshold)
7 beginRANK[k] ~ RA;VK[k] II [i,a,-OCC[PEBBLE[iJ]];
8 T = a,-OCC[PEBBLE[i]]

end;
(advance pebble. if appropriate)

9 ira, =bf

10 then PEBBLE [i] = SYMB [t] + 1
11 elsewhilea,-OCC[PEBBLE[i]] < t doPEBBLE[i] ~PEBBLE[il+ 1

end;

end.

With each a-aec list visualized as wetched along each of the corresponding rows of the

L·matrix, Fig. 2 depicts lhe positions occupied by the pebbles at the beginning of each of Lhe

stages performed by Algorithm 1 on lhe inpm strings of Fig. 1. To illustrate lhe action of the

algoriilim, we uace ils smge 1, which produces the first boundary (consisting of all the 1-

dominant malches). The algorithm staI1S by assigning lhe value' 10' to born T and f, Le., me

variables which will be used to S[Qrc lb.e currcm and previous lhreshold, respectively (lines 3,5).

Next, it compares the first occurrence of symbol a=a\ in p(line 6). Such tcst is passed (3<10),

whence the first l-dominam match is detected and nppended to the lis[RANK [1] (line 7).

- 10-

- Moreover. T is updated to the new value '3' (line 8). At this paim. me algoriilim uies 10 advance

PEBBLE(!] omo a I-internal match. By definition of $. Qi matches $. Moreover, in view ofour

convention, the current value of SYMB [10] is N(a) - 4. Thus line 10 is executed following the

test of line 9, with the effect of bringing PEBBLE [1] to its righttnost position on a-OCC • and

rendering it inactive. As Algorithm 1 proceeds to consider a2 = b, the test of line 6 prompts me

detection and recording of a new I-dominam mmch on column 2 of me L-mauix. This is fol

lowed by the advancemem of PEBBLE [2] which is lhus brought on column 5. PEBBLE[3] is

subjected to a similar rrearrnenl In our example, me first three pebbles provide all the dominant

matches for the first stage. When PEBBLE [4] is considered. it does not pass the test of line 6; line

11 has no effect and this pebble is left in its inactive Slams. The last twO pebbles are also left in

their originill position. We encourage me re:ldcr [Q c:my out for himself the remainder of lhis

example, wilh the aid of Fig. 2.

:i;:age 1

~Da :!baa Da $

- \1 -

!:i~<ige 2

c bacD aa baS

a 1
0---- --------

al •

0 2 0 02
0--------

" 30 ", 8
I ,-:) 8~ ~I '-' C 4,
0 oj

0 5~ b 5,,
8 80 6i -6

stage 3

co aeo aaoa $

12345678910

stage 4

cba cbaaoa $

12345678910

a 1 rl 0 a 1 8
b 2 8 b 2 8
a 31- 8 a 3 8
d 4 .::1 d 4 8
0 51 ' . 0 5 •

b 61 8 0 6 (-y:-'

Figure 2
Pebbling the L-mamx of Fig. 1 through me four stages of Algorirhm 1. The figure
rel.:H..ive to stage k (l5:k5:4) displays the initial positions of the pebbles for mar stage.

Al this point, each active pebble falls either on a k·dominam match or on a k-intemal

match.

- 12 -

In general. it is easy to check that Algorithm 1 maintains the following invariam condition:

whenever some pebble is being considered for the k -ch time, men mere can be no match of rank

k on the same row and to the left of that pebble. In other words. if such pebble is active. then the

match which it points to must be either a k-dominam match or a k-imemal match. Unlike the

algorithm in [ill], Algorirhm 1 uses the following heuristic: matches whose ranks have been

already determined are not reconsidered at subsequent stages.

Theorem 1. .4lgorirhm 1 takes time 0 (lrn +r)

Proof.

During stage k. m-k+1 pebbles are considered in succession. Each pebble either is advanced

some position to the right..or it is not moved. The number of advances on one row is bounded by

me number of ma[Ches on that row, thus the tomi nwnber of advances is bounded by r. A pebble

is considered exactly once during each stage, thus the number of times <l pebble can smy put is

bounded by l. which yields a [Dtill of Em. 0

We remark that me above Slr.Hegy requires 0 (lm+r+n logs) inclusive of preprocessing

and O(d) (O(m») space [0 find the LCS (the length of the LCS). If r < 1m and m is much

smaller than n, this is better than the 0 (En + n logs) in [HII. When r is large compared to ml.

the strongest cause of inefficiency becomes the irmer while loop of Algorithm I. which generates

lhe 0 (r) tenn. We devote lhe next section to curb this tenn.

-13 -

3. IMPROVING EFFICIENCY

The operation of the inner while loop of Algorithm 1 is basically that of moving me j -lh

pebble to the leftmost position of j3 which is larger than the value [of me threshold which was

updated last. This might involve an uncontrolled number of advancements on the ai-DeC list.

The infonnation needed to move the i ·ch pebble is embodied in the srructure of 13 : lhrough the

while loop we want to move the pebble to the leftmost occurrence of aj in 13 which falls past b, .

For s constant andlor small compared m n (like, for example, in the analysis of molecular

sequences [MA, SK]) this information can be made available by a simple preprocessing of !:he

string l3$. We prepare the s(n+l) table CLOSEST[O"\ ...v.pl...n+l] which is filled as follows.

CLOSEST[O"p.n+l]=n+l, for p=1,2•...•s. For j=1.2....n, CLOSEST[fJp ,j]=}, ~ j, where bi"

matches crp but bk.:#:(Jp fOf j < k < j'.

For example, the table CLOSEST associated with l3=cbacbaaba is as follows.

12345678910

cbacbacba $

a .33 6 6 6 7 9 9 W

b 225558881010

a 1 4 4 4 W 10 10 W 10 10

The preparntion of CLOSEST in 8(Sl1) time is straightforward. For instance, it can be

based on lhe alternative definition of CLOSEST offered by the following, equally struighrfor-

ward, Lemma.

Lemma 1. Define CLOSEST[O"p,l1+l] =11+1 ,I ~p ::;;s. Then, for)=I,2, ...n.

CLOSEST[crp ,}] = j fOi p such that °" =b'p } and

CLOSEST[op ,j]=CLOSEST[O"p,J +11 for all Olhcr values ofp.

- 14 -

In addition to the array CLOSEST, we may also make use of the au,"{iliary table SYMB,

already introduced in connection with Algorithm L

With these [wo implemems, the inner while loop can be removed from Algorithm 1, and

substituted there with the simple assignment

PEBBLE [I] = 5mB [CWSEST[ai ,I J]

We refer [Q the algorithm obtained with this modification as Algorithm 2. Notice that AIgo

richm 2 does not access CWSEST if aj = or.

Theorem 2. AIgon"lhm 2 finds an LCS in time 0 (1m + sn + n logs) and space 0 Cd + sn).

The proof of Theorem 2 is srraighrrorward and mus is omiaed. Notice that, of the three terms in

the above upper bound for the time. two are charged by !.he preprocessing. The processing phase

charges a time at most proportional to the product 1m. Since all dominant matches are detected

during this phase. lhen 1m must be an upper bound for the number of such matches.

The term sn becomes huge as s approaches m. To circumvent this, we replace the table

CLOSEST with a new table which we call CLOSE [I ...n+1], and which is regarded as subdivided

imo consecutive blocks of size s. Letting p = j mod s U=l,... ,n), CLOSE U] contains the left

most position nO[smaller than j where op occurs in P$.CLOSE [n+l] is set to n+1.

The array CLOSE U] can be obtained in time S(n), for instance by scanning the o-OCC

lists one at a time in succession while filling the entries of CLOSE relative to each symbol. The

manipulations involved in connection with each o-OCC list are similar to the merging of two

lists, one of size n.ls and the other of size N (0), the number of occurrences of cr in p. ll1Us each

such merge involves less than nls + N(o) comparisons. There arc s such merges totaling less

than s (n Is) +L.pN (op) = 2n comparisons. The total number of assignments is obviously n. We

- 15 -

leave the details of this consUllction to the reader.

We now assume mat me.table CLOSE has been prepared. and we let closesc [0"..., ,j] be !:he

function whose tabular version is the array CWSEST discussed above.

Lemma 2. For any given p and j (1 ~ p ::; s.1 ::; j $; n). closes/rap Ij] can be reL-ieved from

CLOSE[j] and from the up-GeC list in time o (logs).

Proof.

We prove our claim by giving an explicit srrategy to identify closest [op,}] from p and j. First,

compme j I =(j div s)s + p, where div stands for me imeger division operation. Three cases

have to be distinguished according to whet>'1er j '=). j'< j or j '> j. If j '=) then

CWSEUJ=c[osesr(ap,J] by definition. OUf strategy retums CLOSEfj] as the answer in con

stant time. Next. suppose j I <j . If CLOSE U'] =)" > j, then clearly j" = closest [op ,j]. Other

wise closest (Op ,n is not smaller than j" = CLOSE U'] but nOt larger than j'" = CLOSE U'+s].

Now SYMB U"] and SYMB U"'] point to the corresponding entries in the crp·OCC list, and there

can be no more than s entries in crp-OCC between these two emries. Thus closest rcrp ,n can be

retrieved in logs steps by performing a binary search in this segment of op-OCC. The case j '>j

is handled along lhe same lines as the case just discussed. 0

We can now set up still anolber version of our LCS algorilhm, which we call Algorithm 3.

Algorithm 3 does not differ from Algorithm 2, excepllhat the assignment:

PEBBLE [i) ~ SYMB [CLOSEST [a"r]]

is now replaced by:

PEBBLE[i] ~SYMB[closesr[ai,r]]

· 16 .

Theorem 3. Algorithm 3 finds an LCS in time 0 (lm logs + n logs) and space 0 Cd + n).

Proof.

Each call to closest charges 0 (logs) time, in view of Lemma 2. The generic stage can prompt no

more than m such calls, and there are precisely 1 stages. 0

If s can be regarded as a small constant, men Algorithm 3 takes time 0 (Max{lm ,n}).

Thus, in particular, the LCS problem be[Ween two srrings of lengths m and n=!2(m 2) has the

same time complexity of the panem matching problem [AU] for the same strings, except tr.ult

preprocessing is applied here to t.'le '[ext' ramer man [Q the 'panem'. We recall that, under the

asswnption of COIlSlanr alphabet size. the algorithm by Masek and Patterson [:NIP] requires

o (mnllogn) time for all possible values of the ratio nlm.

If n is larger !.han m 2 and s is larger than m , men limiting the preprocessing to the subset of

L containing only those symbols which appear in 0:; enables subsrirution of the logs in the bound

of Theorem 3 wilh min{logs ,logm}. In intermediate siruatiorn, some improvement in the perfor

mance of Algorithm 3 can be g:J.ined from using searching techniques with auxiliary fingers

[BT,BW,ME]. The unexperienced re:lder shall become more familiar wirh such techniques as we

proceed with our discussion. For the time being, it will do to mention that finger techniques

obtain the result that consecutive search intervals on the same a-acc list do not overlap during

each individual stage.

It is not difficult to see that, with the sole use of fingers, the work at e:lch stage can be

bounded by 0 (m log(2nlm», thus yielding an overall bound of a(lrn log(2nlm) + n logs).

This lalter construction has been proposed very recently in a paper which appeared in the litera

rurc during the development of our work [HD]. However, in view of the observation, made

above, concerning the C<lses where s is close to n and rn «n, such <I performance conveys some

advantage on Hirschberg's only in the rather narrow spectrum of siLUmions where, roughly speak

ing, mlog(nfm) is small compared to n while n is small compared 10 m 2. By conlrast, the

- 17-

algorithm which is obtained by combined use of me remiction (to lhe symbols of a) of the table

CWSE and finger techniques, performs in time 0 Urn -min {logs ,logm ,log(2n Im)}+n logs),

---'w"'rncn IS never worse [flan- the-tlrTle--bOuria of the aigonthiri m -tID], and can he berrcr than th.at,------~~

lime bound in a wide variety of instances.

4. A SMOOTH TRANSITION AND A SIMPLE 0(n(n-/+1)) ALGORITHM

Sometimes the number r of matches can be assumed to be small compared to m1 (or to the

expected value of lin). In these cases, it is much desirable to have an algorithm whose running

time is bounded by some slowly growing function of r. TItis observation is the basis of the LCS

algorithm by Hum and Szymanski [HSl, which e:m.ibiLS a time bound of OCCn + r) logn). The

Hum-Szymanski aIgorirhm (hereafter, HS for shorr) eludes me risk. inherent to Hirschberg's stra

tegy, of wastefully reconsidering the same march many times: this is avoided by esrablishing.

row after row, the ranks of all maLChes in each row. The main disadvantage of HS is that its per

formance degenerates as r gelS close EO mn; in these cases this algorithm is outperformed by the

algoril.hm in [HI], which exhibits a bound of 0 (in) in all siruations.

In this section we examine an LCS algorithm which does not quite coincide with the Hunt

Szymanski strategy. Our discussion will lead to a simple o (n(n-L+l)) algorithm, suimble for

similar strings. It will also help understand bener the developments of the following sections.

The Hunt-Szymanski approach consists of generating all the k-dominam matches, row after

row. Using me table CLOSE introduced in connection wilh Algorithm 3 above, one might set up

a strategy which looks similar to that in [HS], as follows. Let THRESH [l...m+l] be an array of

clzresliolds, all of whose locations are initialized to the value n+l.

- 18 -

Algorithm 4
fori = 110m do

begin PEBBLE[i]=j=l;
while PEBBLE fi] is active do

--~~..~.-~···~-·llegiri

ifa,-OCC[PEBBLE[i]] < THRESHU]
then begin T = THRESHU]; THRESHUJ = ai-OCC [PEBBLE [ill;

record new dominant match; PEBBLE [i] = SYMB [ciosesr(ai ,T]]
endj

if a,-OCC[PEBBLE[i]] = THRESHU] thenPEBBLE[i] = PEBBLE [i]+I;
j = j+lj
end;

end.

We leave it LO the reader to recognize Algorithm 4 as nothing but a re-scheduling of the

operations of AlgorirJun 3, and to evaluare irs complexity. He will find it not surprising that both
•

achieve the same time bound. This schedule has some advantages on the previous one in some

extreme situations.

However, Algorithm 4 does not relate to the Hunt-Szymanski S[[;l[cgy as closely as Algo-

rithm 3 relates to Hirschberg's. Indeed, it neglects the basic motivation behind HS I namely, the

efficient management of fuose situations where r is expected to be close to n. In fact, there is no

suong necessary relation between r and the size of the list THRESH which is to be handled at

any given row of L. Thus. as long as we allow an unpredictable number of elements of THRESH

to be considered in cOIU1ection with any row ofL, it is unlikely thm an algoritlun with the comrol

structure of Algorithm 4 could be time-bounded in [Crms of r. An algorithm with a time bound

based on r should be set up as a sequence of more elementary manipulalions, each one of which

can be charged to a distinct malch. We shall see soon thm the row-by-row approach of Algo·

ric/un 4 is compatible with such an objective. Interestingly, the same cannQ[be said of the

approach of lhe preceding sections [AA].

Before disposing of the scheme of Algorit/un 4, we show that it subtends a natural

o(n(n-l+l)) slrategy, suitable for similar strings. We shall only outline such an algorithm, lhe

- 19 -

·details of which are tedious but straightforward. Our construction is based on the following sim

ple observations. Let m =n and imagine running Algorithm 4 rP=abcdbb and !3=cbacba. The L~

---'matrix---woultlocc'(m:stsr-Ihe-n-6rlh'e=fihn1X""'ch1tllii-ns---'"ottne m-,ltnx of Fig. 1; plui a suffillilpe'spev"'e"niflhn-----~

colwnn for $. The final set of thresholds would be {1,2,S,7}. As em be deduced from Fi1!. I,

only k=n-l=2 positions of a are missing from this final set of Uuesholds. namely, me positions 3

and 4. We call each such missing position a gap . and we use COTHRESH to refer to L"Ie sorted

list of gaps. OeJrly, COTHRESH can be deduced from THRESH, and vice versa. If k <n, then

COTHRESH represents a more compact encoding of the final set of lhresholds than THRESH.

Unforr..mately, &..is is not always tr<.!e at any smge of me computation, since THRESH e:in be

occasionally more sparse and COTHRESH correspondingly denser. However, it is srraightfor-

ward to to see mat, in general and for each value of i, the total number of gaps falling within the

first i positio~ ·of eilher the i -th row or ~e i -m colum~ of the L-mal.rix cannot be larger than k.

Indeed, there must be an equal number of gaps, say k', in the i -th row and in the i -th column. If

k' >k, lhen the matches contributed to any LCS by the upper-left U submatrix of the L·matrix

cannot exceed i -k'. Since me remaining ponion of the L-mauix cannot contribute more than

n-i matches, it must be l'Sn-i+i-k'<n-k.

The above observations suggest that an LCS can be found by extending, one row and one

column at a time, the pania! solutions relative to all upper-left square submatrices of the L

matrix. At the i -th iteration, we pebble from left to right the 0 (k) cells of two COTRESH lists.

one for row i and the other for column i. If the p -lh cell of, say, the row-COTHRESH contains

position j <i, and a;=bj , then [i ,j] is a dominant match. The p -th cell of COTHRESH is

removed from that list. Continuing lhe scm, the first cell is located with an entry larger than l+j',

where j' is the value stored in the immediately preceding cell. Qearly, for some i' <i, [i' ,j '+1]

is a dominant match having the same rank of [i ,j], whence gap j'+l is inserted in COTHRESH.

Simple exlfa bookkeeping enables the retrieval of an LCS at lhe end of the process. The algo

rit.hm pcrfonns n iterations, each at a cost of 0 (k) lime.

- 20-

We Start now !he presentation of a new irnplernentalion of Lhe Hunt-Szymanski sIrmegy,

which is not subject [0 the worst case degenerations of HS . Moreover, we will be able to draw for

our algorithm a bound which is exprcssible in tenns of d instead of r, namely,

o (m logn + dlog(2mnld)). Intuitively, and with reference to Algorithm 4, this can be obtained

by dynamically swapping the roles of the twO lists which are merged at each row of L, namely,

THRESH and ", -acc .

For the relder's convenience, we SLaTt our discussion by reproducing HS below as Algo-

rithm 5. Notice mar HS preprocesses ~ [Q oomin an appropriate number of replic:lS of the

reverse of each cr-OCC list: such lists are called MATCHllSTs in [HS].

Algorithm 5: 'HS'
element array cr.{1:m],f3[I:n Jj integer array THRESH [O:m]; list array MATCHLlST[l:m]j
pointer array UNK[I:m]; pointer PTR j

begin
(PHASE 1: initializations)

fori = 1 tom do

set MATCHUST[i J = {hJ~, ... ,jp}suchtlwth > h··' > j~

and OJ = bj, for 1~ Sp
ser THRESH(i] = n+lfor l~i5m;THRESH (0] = 0; LlNK(O] = null;

(PHASE 2: find k-dominant matches)

for i = 1 to m do
for j on MATCHLlST[i I do

begin
find k such rhacTHRESH(k-l] < j ~ THRESH (k];
if j < THRESH (k J then

begin THRESH(k] = j; LlNK(k] = newnode(i.j. LINK (k-IJ) end

end
(PHASE 3: recover LCS y in reverse order)

k = largest k such chac THRESH [k];rn+l; PTR = UNK[k]j

while PTR ;enu!l do

begin print the match [i,j] pointed to by PTR ; advance PTR end
end.

The principle of operation of HS is transparem: by scanning Lhe MATCHLIST associalcd

with the i -cit row, the malches in that row arc considered in succession, from right to left;

Uuough a binary scarch in the array THRESH, it is assessed whether me march being considered

- 21 -

represents a k-dominam mmch for some k. In this case me caments of THRESH[k] is suimbly

updated. We remark mat considering the matches in reverse order is crucial to the correct opera-

----rrd6rr'"6ffls-(the-'-re':tderis-i'eferre-ct=ro"iHS]-ro-r-deriiilsj.'i'he-torattlme-spenT1Iy-HSls bOunded by

O«r+m)logn + nlogs), where the nlogs renn is charged by me preprocessing. The space is

bounded by O(d+n). As mentioned. this time performance is quite good whenever r is compar

able IO n: in such instances, the worst case time Ix>und becomes in fact 0 (rlogn) - 0 (nlogn).

However. this performance degenerates to S(n 21ogn) as bam r and m get close to n .

- 22·

5. A MODIFIED PARADIGM FOR HS

The objective of mis section is to rearrange HS in a harmless way. but so that it be easier

for us to distil! possible sources of inefficiency. It will tum our that the new scheme can be

implemented more efficiently than the original one, as we show in Section 6.

OUf main modifications concern the second phase (Le., finding k-dominam matches) of HS

as ~resented above. Slight adjustments of the preprocessing are also required. The first innovmion

brought abom by algoriLhm HS 1 below is that HS 1 does nO[consider all the matches in each

row. Ramer. HS 1 maintains. for each symbol. ils associared acri"'e list of matches, !:he matches

of my such list being characterized by me fact that L1ey are nm currem rr..resholds. The second

innovation consists of sparring all and only the new dominant matches contributed by any given

active list by performing a nwnber of primitive dictionary operations [AU] proportional to me

number of these new dominam matches, Le., independem of the current size of the active list

involved.

As regards this second feature, a glance at Fig. I shows that the bold circles of aUf example

are roughly one half of all circles. 'While it is obviously always the case that d 5: r, there seems

to be no general direct proportionality between d and r. For example, consider the following two

extreme instances, I:x>th offsprings of me assumption a = p. In the first extreme, we also assume

that ex. and Pboth represem some permutation of the integers: thus d = r, but also d = n. In the

other extremc, we set insread ex. = all , Le., both Strings consist of n replicas of the same symbol

a: thus r = n2, but still d = n. More generally, HS I is asymptotically much faster than HS

whenever r = 8(n 2) while d = 0 (n). As the above brief discussion suggests, thcse latter condi

tions are met, in particular, by pairs of nearly identical input strings. Unfortunately, there are still

cases where both r and d are quadratic in the size (m +n) of the input.

From now on, wc shall find it more convenient for our discussion to 'pebble' the entries,

rather than the locations, of the active lists.

·23 -

A:Igoritlirn ii':'HSP
THRESH is the list of thresholds initially empty; each 'active' list
AMATCHUST [crp]' p=1,2,...s is initialized to coincide with me corresponding ap

Gee list. The primitives INSERT and DELEI'E have the usual meaning, except they
-------<do-nothing.....o..-if---the-----first=-ar-gument-=---i8-'-'-ll-+l--=--or-me-second-----a;gwnent-is-A.~.--------

SEARCH(key I LIST) returns (a pointer to) the smallest element in LIST which is
"ot smilller man key (n+1 , if no such element exists). SEARCH (n-+- i LIST) rerums

n+l without performing any action. Notice that all me searches performed within
HS 1 terminate without success (i.e.• key is not in LIST). The function char (symbol)
rcrurns the element of !.he alphabet L which coincides with symbol. By convention,
AMATCHUST[$] = (n+I) = A.

begin
fori = 1 tom do

begin cr = char(ai); PEBBLE = firsr (Ai'vtATCHLlST [crJ) : FLAG = true:
whileFUG do

begin
1) T = SE.'JiCH(PEBBLE, THRESH) ; k=,ank(T);
2) ifT=n+l then FLAG =false;
3) INSERT (PEBBLE. THRESH); DELETE(T , THRESH);

-I) UNK[k] ~ newnode(i ,PEBBLE. LINK [k-I]);
5) cr· ~ char (!>r);
6) DELETE(PEBBLE, AMATCHLlST(cr]);

7) PEBBLE = SEARCH (T ,AMATCHLlST(cr]);
8) INSERT(T ,AMATCHLlST[crl);

end;
endj
retrieve y as per phase 3 ofHS ..

end.

To illustrate the opermion of HS 1, we may refer to Fig.l and interpret it as representing the pro·

duct of HS 1 after it has processed me matches between ~ = cbacbaaba and the symbols in the

first six positions of (l = abcdbba.... At this point. THRESH consists of {1,2,S,8}, and

0", = Q7 = a. At lhis particular stage of our example, it so happens that

AMATCHLlSTla] = {3,6,7,9} coincides with lhe a-Gee list. i.e" all occurrences of a in ~

could become new thresholds. HS 1 starts by searching for '3' in THRESH. which returns the

entry'5'. Since 5 *' n+l, lb.en THRESH is updated so lhm it becomes now {1,2.3.8} (line 3). The

entry '3' is deleted from AMATCHUST(a 1 (line 6). The algorilhm now searches in

AiYfATCHLlST[a] for me old threshold value '5'. and lhis search rcrums the new PEBBLE '6'

- 24-

(line 7). Finally, '5' is returned to AMATCHUST[char(b,)] = Al>1ATCHUST[b] (line 8). Thus

this block tenninates with FLAG = true. 'When line 1 is executed next, this provokes the SUbSli-

rodan in THRESH of the old entry '8' wim the new emry '6', which is accompanied by the vari

ous list updates. The search of line 7 advances PEBBLE to position '9'. As soon as line 1 is exe

cuted again, FlAG is set to false _This will cause me exit from the while loop soon after the

necessary updates have been performed (notice that some of me updates are dummy in this case,

since T = n+l, and mat the search ofline 7 is gratuitous. since FLAG was set LOfalse). As me

final result of me management of a7. THRESH has become {1,2,3,6,9}, while AJ.VfATCHLlST[a]

shrunk to just {7}. On the other hand. AMATCHUST[b 1was given back the matches '5' and'S'.

In general. the correcmess of HS 1 can be established as follows. First, we observe that, as

long as we stay within the same iteration of die outer loop of HS 1, an item j removed from

THRESH (cf line 3) will never have to be reinserted in THRE~H. Notice diat this is true

irrespective of whether [i ,j] is a match (i.e., irrespective of whemcr cr = cr'). Thus the insertion of

line (8) must be executed after the search of line (7). It is easy to check dien lhat the ifUler loop of

HS 1 maintains the following invariant condition: if PEBBLE=j:#.n +1, dien [i ,j] is a k-dominant

match for some k, and, moreover, the first k-l positions of THRESH contain values which are

final for row i. As for the OUler loop, after HS 1 has performed the i -th iteration, the following

assertions hold.

I) The k-th entry of THRESH is the smallest position in p such that there is a k-dominam

match between Ui and p.

2) AMATCHLlST[cr
l

] (t=1,2, ... ,s) comains all and only the occurrences ofal in 13$ which are

nOt currently in THRESH.

We arc now ready to assess a time bound for HS 1. The preprocessing involved in HS I is

quite similar to that in [HS]. The table char is thought of as produced during preprocessing,

within the bound of 0 (n logs) charged by this laucr (in fact, Algorirluns 1-3 also make implicit

use of some such lable). Thus each subsequent reference [0 this table can be assumed to take

- 25-

constant time. HS 1 takes at least SCm) time, since it considers each one of me m rows, in succes

sion. Since n+l appears at the end of eJch AJ.l1ATCHUST by"initializmion, men HS 1 spends coo

----'sfantiim'e'-i:ii1ta:rrdliil¥'iri'y-fflliiat="i6W"o'r--r:--;---t'e:. any row wh-o-se 1fMATtittis) IS fouit-a to con

tain currently only n+l.

Theorem 4. In handling all nontrivial rows, Algorithm HS 1 performs SCd) searches. inser

tions and deletions.

Proof.

All the searches. insenions and deletions mke place in me while loop (lines 1-8) controlled by

FLAG. There is a fixed number of such primitives within these lines. whence it will do to show

that FLAG is .rue exactly, d times. Wim our assumptions. cr=char(a ,) and

AJ.WATCHLlST[cr] =char (a ,)-GeC is not empty, and the first element on !.his list (i.e.• the left

most match in the form [ljJ) is a I-dominant match, as well as lhe only dominant match in that

list. By initialization, FLAG is true the first lime it is tesred. Since THRESH is empry at this

time, lines (3,4) will be execmed. whence the first I-dominant match is recorded. The algorithm

also proceeds to the updiue of the other lists involved, so that at the next step the contents of such

lists will be consist:enL Moreover, since the SEARCH of line (1) rerums n+l, then FLAG is set

to the value false, which exhausts all manipulations involving matches in the first row. In gen

eral, the first match on the AMATCHUST associated willI a non trivial row is certainly a k·

dominant match for some k. Assume that a certain number of entries of this AMATCHUST have

been processed and that: (i) the number of times that FLAG was true equals the number of dom

inant matches detec[ed so far, (ii) j identifies the last dominant match detected, and (iii) j is lhe

only such match which has not been recorded yet. It is easy to see mat HS 1: locates the displace

ment of this match in THRESH (line 1); switches FLAG to false, if appropriate (line 2); updates

the lists and records lhis new dominant match in LINK (lines 3-6, 8), and probes into

AJ.""tATCHUST[cr] seeking me next position to which the PEBBLE should be advanced to mark

- 26-

the next dominam match (line 7. meaningful only if FlAG is true). Thus FLAG is true as long

as conditions (i-iii) hold, that is. exactly for d times. 0

The actual time bound of HS 1 depends on the internal representation which is chosen for

the various lists involved. lithe lists are represented as priority queues such as 2·3 trees or AVL

trees [ME], men HS 1 runs in 0 (dlogn +nlogs) time, inclusive of preprocessing, which reduces

[Q 0 (dloglogn + n logs) if one uses a structure better fit [Q me manipulation of imegers [VE].

This already compares favorably with the corresponding bounds in [HS], where r figures in the

place of d. One interesting observation. however, is that the sequences of insenions in each list

constitute in fact merges of soned linear sequences. Efficiem d}l1amic srrucrures are available

[BW,BT.:\1E] which suppon, say, me merging of two lis[S of sizes k and!?2c in time

o (k log(2! Ik ». This leads to speculation that the total time spent by HS 1 for the mergings could

be bounded by a form such as O(mlogm + dlog(2mnld». Unfortunately, it does not seem that

the 0 (klog(2! Ik» bound still holds. with such sU'Ucrures, if deletions are intermixed with inser

tions in an uncontrolled way. Besides, the management of such structures is rather involved, and

their storage requirements usually large.

It turns out that the special case which is of interest here is indced susceptible to efficient

implementation on finger-rrees [APJ, In what follows. however, we provide an alternate con

su:uction based on simpler structures, and thus show that the desired performance can be achieved

at the expense of almost negligible complications.

6. CHARACTERISTIC TREES

We present a data slIUcture suitable for lhe efficient implementation of dictionary primitives

[AU,MEI on soncd subsequences S of a fixed subsequence U (the universe) of the string of

integers 1 2 ... n. We shall assume, to simplify our presentalion. lhat the cardinality m of U is

such that m = 2c for some integer c.

·27 -

Having chosen U, we associme wiili it a balanced and complete binary uce Tu with m

leaves. labelled in succession with the keys in U (i.e.. wirh an imeger in {I,Z... ,n n. Each imerior

--~-·venex.--v--of-T--u-is-marlced---wilh-the=ordere"d--piliKlHc:eys-representing-the'-largesr-elements-of-U·--------

which appe:lr in me subuees of Tu romed at the left and right son of v, respectively (for all our

purposes, this information is redundant if m=n: however, for unifonnity of treaanem, we con-

sider it as provided in all cases). Any choice of a subsequence S of U translates in a correspond-

ing h"1Stantiation Tu(S) of Tu, as follows (Tu itself can be regarded as Tu(4l), wirh 4t the empty

sequence). Each leaf linTv(S) is marked' 1' if i ;:: S I and '0' otherwise. Thus. the leaves of the

tree become a blueiJrim afme ciulracterisric function of the set Swim respect to the universe U

(see the figure below). In addition, each imerior node is marked '0' if neilher of its son nodes is

marked '1', and 'I' omern·ise. TveS) is c:illed the U-characteristic lree associated wich S or

simply the C -cree of S when dlis raises no confusion about U. The C-rree of S requires only

2m-1 records (acrually, bits when n=m), and it can be allocated sequentially, as any heap.

Thus, for any node in a C-tree, one can cravel just as easily upward, downward or horizontally

on the same level.

1 (13,62)

1 (7,13) (41,62)

(53,62)(28,41)

~

ODOGJDDGJDGJGJDDDGDD
2 5 6 7 9 11 12 13 20 28 29 41 42 53 58 62

Figore 3
The characteristic tree of the set S = {7, 12,20, 28} relative to tL~ :i.et U =

{2, 5, ... , 62}. All 'a' marks are omitted, and range information is noc
reponed on tbe deepest interior nodes. To exemplify just once, leaf 53 is
conne::~e= to i:~ ch<'.racr~:-:s;:ic noj~ by;::, !Ji"ol:er. line.

- 28-

For any elemem i E U which is nO[(is also) in S , !:he operation of inserting i in (or deleting

it from) TueS) is straightforward. The key propel1Y of TueS) is mat if a venex is marked 'I'

('0'), then all its ancestors (descendants) are also marked 'I' ('0'). It is convenient [0 associmc,

with each leaf i of Tu(S) such that i E U-5. the characceristic node y (i) for that leaf, defined

as the highest 'O'-node on the path from i to !.he com. Now, to uansfonn TueS) into Tu(Su{i}),

it suffices to change the marks of all venices on the pam of TueS) from i to v(i) (inclusive).

Likewise. to delete leaf i. travel from this leaf upward changing all marks [0 '0', umil the Jim

vertex is encountered born sons of which were previously marked' 1'. The mark. of this node is

left unchanged. and t..'1e son of this node through which the node i[Sclf was reached becomes the

new characteristic node of i. The operation of testing for membership in S of a key i E U , though

immediate, is of not much use. To compensate for this, the operation of searching is not resrricted

to take arguments from U. More precisely. we define lhe search of i E {I ,2•...n} in Tu (S) as the

function which rerums the first element j of S not smaller lhan i Cor n+l. if no such element

exists). We asswne L1at any such search originates at the Ix)[[om of Tu and from a finger leaf f .

The searching technique used requires only slight modifications of otherwise standard searching

on a finger-tree [ME] (cf. also [BT.BW]). In shon, the finger search for i in me C-tree TuCS)

takes the same effort as the finger search for j in TU J if Tu is regarded mis time as the finger tree

associated with the set U. For instance. assume that i >f .The search stans by climbing from leaf

f toward the root. (pcrforming transitions to right neighboring nodes. whenever appropriate) until

a node v is found which is marked '1' and which subtends an intcrval of U the right end of which

is larger than i. If j is not in the subtree of Tu rooted at v, the predecessor of j in S certainly is.

Which case applies is ascertained by a slraightforward downward search which is driven both by

lhe range and boolean infonnation Slored in each node. If the element of S returned by this search

is the predecessor of j in S, let v' be the deepest I-marked right neighbor of an ancestor of v.

Then j mUSl be the lefunost element of S in the subtree of Tu roOled at v '. The node v ' can be

casily spoued by resuming the climb from v. Alternatively. this second stage could be avoided

- 29-

by linking the I-marked leaves ofTu (5) in a linear list.

In any case, the effon involved in the search is bounded by a constant times the number of

nodes that are visited during the climb-up process. Visiting each new node corresponds to dou-

bUng the previous guess for the distance sepanHing i from the finger in me key space U, much as

it happens in an unbounded search [BY]. This observation suppons the following srraightforward

lemma (cf.• for instance, [ME]).

Lemma 3. The search in Tv(S) for an element which fails b positions (i.e .. leaves) away from a

finger takes 0 (logb) steps.

We now consider sequences of consecutive searches in Tu(5), which stan with the finger

pointing to the leftmost leaf of Tu_By always bringing the finger on the key returned by the

search which was performed last. it is easy to maintain inductively mat if, for me current query,

f?:i I men! is also the result of the search. Thus, each time a climb-up process is performed, this

results in moving the finger to the right of its previous position. For k consecutive searches, the

total effort is bounded by a constant times the sum

,
l:logbj
j=l

wl:cre the bj 's represent the widths of the various incervals, and these laner are non-overlapping,

,
i.e., l:bj :s: 2m. With lhis constraint, the above sum is maximum when all the b/s are equal,

j=1

which yields <l bound of 0 (klog(2mlk)) for the sequence of searches. The problem is more com·

plic<lted when we consider instead a sequence of consecutive insertions (or a sequence of con-

secutive deletions), due to the fact that the climb-up is always to be performed !.here, for the pur-

pose of node re-marking.

It is fortunate lhat a bound similar to me above can in fact be drawn also for these cases.

Again, this is due lO the fact th:ll Tv can be regarded, say, as a special 2·3 tree of the kind

presented in [BT] (efr. also [BW,NrEJ). The specialty consisls of our tree having only 2-nodes. To

- 30-

be more precise, we appeal to the following result in [BTl

Lemma 4. Let T be a 2-3 tree widl m leaves numbered 1,2,... ,m. and let i l,iz, ... ,(~· be a subse-

quence of me leaves. Let £0 = 0 and, bj = ij-ij _1 + 1. for j = 1,2,...•k. Funhennore,

for i and j I > i I let I (i ,i ') be the number of nodes which are on the path from i' to

the root but nO[on the path from i La the root. Finally, let

k

P ~ rlogml + 1 +L;ICij-l,ij).
;=1

Then p obeys the inequality:

k

P ~ 2(f1ogm1 + Lflogbjl).
j=l

For any subsequence Q of U of cardinality k, lhe expression denoted by p is an upper

bound for the process of producing Tu(Q) (Tc,') from Tu (Tu(Q)) by orderly insenion (deletion)

of the elemems of Q.

Let now U and Q = (i l,i2, ...• i,J be subsequences of {I ,l"",n} of cardinalities m and k.

respectively, and let S be a subsequence of {l,2,... ,lI}. Wilh reference to Tu(S), consider the fol-

lowing lhree homogeneous series of k operations each. Each series applies a chosen primitive to

all the elements of Q. in and orderly fashion. The series which are considered are: (i) the linger-

searches of each of the elements of Q (where lhe finger is suitably iniLialized \0 point to io=Q).

(ii) the inscrtions of each of the elements of Q, (iii) the deletions of each of the elements of Q

(the two latter series being defincd only when Q is also a subsequence of U).

Lemma 5. p is an upper bound for each of thc series (i-iii).

Proof.

Obvious for the searches, for which the bound that was sketched above is actually tighter. Con-

sider men the insenions. Assume that i l,j 2•... ,ij _ I=! have been insel1ed. and let i be the leaf

- 31 -

marked '1' which is the closest such leaf to the left of ij (i = 0 if no such leaf exists). It suffices

to show that i :;::: f implies I (i ,ii) 5:.[if ,ii)' Now i * f implies that! < i. Since the three indivi-

duat paUlS tram lie- root to each or) , l, ana lj aU·share a common ·prefi£ conslderme-L'''ompmm>ioiO,,[------~

node whereby this bundle of paths is splil If only one path takes the right branch QUE afthar node.

rhen, since i < ij I [his must be the path to if. and the assenion holds with equality. On the oilier

hand, if two of the paths depan along me right branch then mese must be the paths leading to i

and i j • and i(j ,if) is at most [if ,i). But since the tree is perfectly balanced, then

l(j ,i) = l(j ,ii)' whence the assertion follows. An analogous argument proves the claim for the

series (iii). 0

In view of Lemma 4. Lemma 5 can be rephrased by saying that k orderly insertions in an

originally non-empty C-tree do not require more effon than in the case where the tree is initially

empw Likewise, the work involved in k orderly deletions cannot exceed the effim of transform·

ing a m:e which S[Qres exactly k elementS into the empty tree. We leave it as an exercise for the

reader to show that the assumption, made at the beginning of this section, that m is a power of 2

can be levied al this point with no substantial penalty on the resultS presented so far. Lemma 5

does nor apply [Q any hybrid series of dictionary primitives. However, we shall use it to show that

it works for the peculiar hybrid series which are involved in HS I at each row. Thus, we assume

henceforth that all lists in HS I are implemented as C-trees, Le., heap structured complete binary

trees, and lhat each such trce is endowed with a suitable finger. The collective initialization of all

trees takes trivially S(n) time.

Theorem 5. HS I requires 0 (n logs) preprocessing lime and 0 (m logn + dlog(2mnld)) pro

cessing time.

Proof.

Il is easy ~o check that me preprocessing required by HS I is basically lhe same as rnat required

- 32-

by HS. whence we can concemrate on the second time-bound. Let d; denote the nwnber of dom-

mant matches which HS 1 introduces as a result of handling row i. As seen in the discussion of

Theorem 4, di searches are perfonned on THRESH while considering row i. Observe that the

arguments of successive searches constirute a strictly increasing sequence of integers, and that the

same can be said of the values rerumed by those searches. Thus, by Lemma 5, the COSt of all

d,

searches on this row is bounded, up to a multiplicative constant, by logn + L logb,b where the
.1::=1

"intervals 0;: are such that L bJ: :s; 2n. since the C-tree of THRESH comains n leaves. (Recall
;;",,1

that, in the upper bound for me searches, the logn tenn is actually u.nnecessary.) It follows that,

d
up to a rnuhiplicative consmm. the [O[al COSt on all rows is bounded by mlogn + L:logb,l:> where

.1;",1

d
now Lb): ::;: 2mn. With dtis constraint. the previous sum is maximized by choosing all bi equal,

k=1

Le., bi = 2mnld. The claimed boWld then follows at once.

It is not difficult to show that the same boWld holds for the insertions and deletions per-

fanned on THRESH. We observe the following. First, the two lists of arguments for the inser-

tions and deletions, respectively, represent increasing subsequences of the integers in [l,n].

Moreover, the set of icems inserted into THRESH is disjoint from the set of items deleted from

THRESH. The second observation enables to deal with each one of the two series separately. In

other words, lhe tOtal work involved in the insertions and deletions affecting THRESH at some

row is nOt larger lhan the worle which would be required if onc pcrfonned all the deletions first,

and then performed all the insertions. Thus, through an argument analogous to lhat used for the

searches. the bound follows from Lemma 5, and from !.he fact that, on each row, THRESH is

affected by di insenions and by a number of deletions which is at least di-l and at most d;.

We now turn to lhe primitives collectively performed on all lhe AMATCHLlSTs invoked

during the management of aoy single row. The key obselValion here is !.hat Lhe sum of !.he cardi-

nalilies of all such lists never exceeds n. In fact, lhere will be exactly n leaves in !.he forest of C-

- 33-

aces which implement such lists. If the C-trees corresponding [Q the various A.IHATCHUSTS s are

visualized as aligned one after the other, it is easy [Q adap[me same argwnent which was used for

--~,THltES11f(nllepruiutives--anecting -llie collection-ciUrteSt:: listS. lride-ed, ihe specJ3:1 condmons on

the searches, insertions and deletions still hold locally, on each individual. list. This leJds [Q our

claimed bound, since the d, insertions in THRESH correspond in fact [Q d; searches witll dele

tions on AMATCHLlST[cr], and an equivalent number of inseI1ions lake place in th.e collection of

all lists. 0

7. A LINEAR SPACE ALGORITHM

In this section we present an algorithm. Algorithm 7, which determines an LCS in line:lr

space and in time equal to tha[of Algorithm 3 up [Q an additive tenn D (m logm) [AG]. As men·

doned, the only previous algorithm lhat computes an LCS in linear space [HC] takes never less

than e(nm) time.

Algorirhm 7 follows the same divide-and-conquer scheme of [HC]. The algorithm applies

the auxiliary procedure length recursively [Q smaller subproblems until it obtains a trivial one.

The procedure lengrh is a straightforward adaptation of Algorirhm 3: /engrh can work on an arbi

trary substrings aib.. ,ai2, bj 1> .•• ,bj2 of 0: and p, and that it does not keep track of all dominant

matches. Thus length computes only the length lsub of the LCS for that subproblem. The pro

cedure is called by passing four parameters to it, namely, i l,i2,j 1 and j 2. It rerums {sub and the

the array RANK which comains lhe lefunost k-dominant match, for each k=l, .. ,l. At the begin

ning, the procedure expects to find PEBBLE[i] active and poiming to the the emry j of ai-DCC,

which corresponds to the lcfunos[occurrence of aj in the imcrval [J1...j2}. If the procedure

finds mm PEBBl.£ [i] falls outside the interval [J L.j2], then it marks lhis pebble dead, if i[

were not already such. The procedure advances me active pebbles of each row until all of them

become inactive. A pebble becomes inactive as soon :l..S either the procedure advances it onto an

emry of the associated ai-DCC list which is larger than j2, or it attempts at advancing the pebble

- 34-

past the last entry of ai-GCC. When the first case applies, the pebble is retracted by one position

on me list: mus by me end of the execution of length each non-dead pebble poinlS [0 the right-

most position that it can occupy in the imerval U1...j2]. Following our discussion of Section 3,

we implement now closest by using both me table CLOSE and appropriate fingers on the a.GCe

lists.

Procedure length (il, i2,jl, j2, RANK. [sub)

0) RANK [k J~ 0, k=I,2,... ,(i 2-i 1); mark dead pebbles outside U1...j2];
I) k = 0
2) while there are active pebbles do (stan Stage k-i-l)
3) begin T=j2+1; k=k+l;

4) for i = i l-l+k to i2 do (:ldvance pebbles)
begin

5) 1 = T;
6) if PEBBLE [ll is active and ai-GCC [PEBSLE[i]] < T then

(update threshold, update lefunosl k-dominam ma[ch)
7) begin T ~ o,-GCC[PEBBLE[i]]; RANK [k]=Tend;

(advance pebble. or make it inactive)
8) PEBBLE [i]:oSYMB [closm[oi ,I]];

9) if PEBBLE [i I is active and 0i -GCe [PEBBLE [i II > j2 then
10) begin PEBBLEU]=PEBBLE [i]-I; make PEBBLE U} inactive end;

end:

end (/sub ~ k).

The procedure length detec[S all k-dominant matches. as is readily checked. although it

records only the leftmost k·dominant match incurred for each k. TItis obtains the linear space

bound.

Algorithm 7 is actually based on the four procedures lengch, lengchrev lies and [csrev. The

companion procedure of /engrh, lengrhrev, is simply a replica of lengeh just made suitable for

processing me mirror image of any subproblem on me input strings. Thus, for instance. calling

fengrhrev with parameters: 1,m.Cn, has lb.e same effect as letting length run on the reverse of

the input strings. The mirror procedure [csrev is related to the procedure Ics • which is still to be

described. in the same way. In conclusion, we only need [0 list lcs.

- 35 -

We need to make a few additional assumptions, namely:

- We stipulare mat m is a power of2.

j l,j2, the procedure always finds pebbles and finge[S pointing to the lefanost positions in the

interval U1...j2]. We replace it with the new assumption that either all pebbles and fingers

occupy the rightmost positions in the imerval U1...j2J, or else they all occupy the leftmost one.

Procedure length checks at its inception which case applies. and brings all pebbles to their left~

most positions, if necessary. This does not affec[me time bound of the procedure.

Algorithm 7: 'Procedure lcs J (l,m ,1,n,LCS)

begin
1) if n=O or m=l then detennine LeS in constam rime
else (split the problem imo subproblems)

begin
2) length (l,mI2, l,n.RANK 1,Isub I);
3) lengthrev (ml2+l,m ,I,n ,RANK2,lsub2);

4) j ~ findmax(RANK I,RANK2,lsub ,,1sub,,lsub);
(derermine the length !sub of the LCS for this subproblem)

5) Ics(m!2,m ,I,j ,LCS I);
6) Icsrev (m/2+ l,m ,n-j ,n LCS2);
7) combine the ntlO ourpurs LeS I and LCS 2 ;

end;
end.

The function findmax dctennines the value j=RANK l[k] such thal, if j' =RANK2[k '] is

the smallest enrry of RANK2 which is larger man j, then !sub = k+k' is a maximum. Thus, the

first lime fitldmax is executed, it rerums lsub = l, Le., the length of any LCS of 0: and ~. More-

over, the match [i ,j] with maximum iSmI2 belongs to an LCS oflhe two input strings.

The function fitldmax can be straightforwardly implemented in such a way as [0 require a

number of SlCPS proportionallo /sub 1+!sub252lsub.

The correcmess of lcs follows from the :trguments in [HC].

- 36-

Theorem 6. The procedure lcs finds an LCS in time o (mlogm+milog(min[s,2nlm])) and

space 8Cn).

Proof. We consider all the executions of length and lengrhrev involved at the k-th level of

recursion of our suategy. at once. Such executions are relative to consecutive substrings of a. of

uniform length m/(Zk), and consecutive substrings of p. Starring from the upper-left corner of me

L-mauix, each such subsaing of Pis paired iJp twice with a subsuing of Ct. The upper pairing

involves an execution of length. the second one an execUlion of lengchrev. We define a block at

level k as the submatrix which is the domain of [wo such consecutive subproblems.

All the executions of findmax at this level charge 0 (1) time. Adding up for all values

1,2,... ,logm of k yields a bound 0 (I-logm) for the tmal work performed by findmax.

The execmion of each length (lengthrev) can be bounded in tenns of

ml(2k)-if log(min(s ,2n ·2k 1m]), where if denotes the length of the LCS associated with the gen

eric subproblem. There are 2k calls at level k, yielding a [Oml time:

up to a multiplica[ive constant. Now it is

In fact, each if cannQ[be larger than the length of the solution [0 the corresponding block, and

th.e sum of the 2k - 1 such lengths cannot exceed [,i.e_, the length of the global Solulion_

Thus we have, in conclusion, that me [Otal work. at lhis level of recursion can be bounded in

tenns of me quamity:

m 2n .
[---log(min [s ,_2"])

2' m

The right tenn can be rewritten as:

mle. 2n 2mm _2n
[--100-(2 -min[s ,-]) = i-k--, + 1--, log(mm [s ,-D-

21e.':> m 2"2 m

Adding up through k = 1,2,... ,10gm yields:

[ogm k 2n log". I
mIL-. +mllog(min[s,-DL,.

.1:=1 2" m k=l 2

Since:

and:

logm I
'" -=2
'-' 2'.<:=\

1
210gm < 2,

logmk 11
'" -. = 00"",-1)--+-
£oJ ,.,,, - (Om) 0'
,(=1 --

then we obtain the claimed 0 (mlogm+mllog(min (s ,2nlmntime bound.

The linear spac~ bolli"1d follows from an argumem in [HC). 0

8. CONCLUDING REMARKS

Any known approach to the LCS problem computes, in its own way, a minimal anrichain

decomposirion (MAD: for this notion and relmed ones the reader may refer, e.g., to [BOn for a

partial order defined on the set of matches: an LCS is a longest chain in the poset of matches, and

a set of matches having equal rank is an anrichain. The MAD problem for posets can be solved in

general by flow techniques (BOJ. although not in time linear in the number of elements of the

poser.

The main algorithms discussed in this paper have their natural predecessors in [HI-He] and

[HS]. In tenns of MADS, the approach of [HI-He] consists of computing the anti chains one at a

time, while mat of [HSJ extends panial antichains relative to all ranks already discovered, one

step at a time. The interested reader shall find that also the approach in [NYJ, which yields

bounds of O(n(m-l+l) or O(m(m-l+l)logn) falls inro this second category. Moreover, it is

easy to check that the second bound can be reduced to O(m(m-l+l)min{logs,logm,log2ntl})

by the techniques developed hefC.

- 38 -

Algorithm 1 and its companion algorilhms are inherently off-line. as is me original algo

rithm in [HI}. Also, the best time bound obtained here with iliis onc·antichain-at-a-time approach

rums imo 0 Un), i.e., the bound already achieved in [HIl. when the input strings have nearly

equal lengths. Since lm is an upper bound for d, and lhere are situmions where d=O(n) while

Im=EJ(n:\ then Algorithm 6 (HS 1) appears to be asymptotically faster in general than the other

algorithms presented in this paper. Moreover. HS 1, like HS itSelf, can be executed on-line. On

t.h.e other hand, the basic strucrure of Algorithm 3 can be used to set up a linear space LCS algo

rithm which takes time equal to that of Algorithm 3 (when finger-searches are used), up to an

<!.dditive term 0 (m logn). Interestingly, it does not seem that .4.lgorilhm 6 is amenable to an

equivalem (i.e., time-performance-preserving) implememalion in linear space. Some of the 'log's

in our bounds can be reduced to 'loglog's via the teclmiques in (VEl However, the corresponding

improvements would n~)[be significant. Finally. we mention that the problem of devising an

o (nlogn) time algoriIhm for the LCS of two strings, or showing than no such algoriIhm exists. is

still open.

- 39-

Acknowledgements

We are indebted [0 Z. Galil, K. Mehlhorn. F. P. Preparata and W. Schnyder for enlighrening dis

cusslOns, and to hvo referees for tl'ie-tr very usd1iCc-6mments.--

REFERENCES

[AA] Aposmlico. A. Remark on Hsu-Du new aIgorilhm for the LCS problem, Tech. rep., Pur

due Univ. CS DepL, (1985, submitted for publication).

[AG] Aposwiico. A. and C. Guerra. A fast linear space algorithm for computing longest com

mon subsequences. Proceedings of the 23·rd Allerton Conference, Monticello, Ill. (1985).

[APJ Aposwlico, A. Improving the worst case performance of the Hunt-Szymanski strategy for

the longest common subsequence of two strings, Tech. rep., Purdue Uillv. CS Dept.

(1985), to appear in rnformarion Processing Letters.

[AH] Aho. A.D., D.S. Hirschberg and J.D. Ullman. Bounds on the complexity of-the maximal

common subsequence problem. JACM 23. 1, 1-12 (1976).

[AU] Aho, A.V., J.E. Hopcroft. and J.D. Ullman, The design and analysis of compUler algo

rithms, Addison-Wesley, Reading, Mass, 1976.

[BO] Bogart, K.P.,Inrroducrory Combinarorics, Pitman, 1983.

[BT] Brown, M.R., and R.E. Tarjan. A representation of linear lists wil.h movable fingers.

Proceedings of the lO-th STOC, San Diego, Ca., 19-29 (1978).

[BW] Brown, M.R., and R.E. TaIjan. A fast merging algorithm, JACM 26,2,211-226 (1979).

[BY] Bentley. J.L., and A.C-C. Yao, An almost oplimal algorithm for unbounded searching,

Inform. Process. Leeters 5.82-87 (1976).

[HD] Hsu, W.J., and M.W. Du. New algorithms for lhe LCS problem. JCSS 29, 133-152

(1984).

- 40 -

[HI] Hirschberg, D.S. Algorithms for the longest common subsequence problem, JAC]'.t! 24,4,

664-675 (1977).

[He] Hirschberg, D.S. A linear space algorimm for computing maximal common subsequences,

CACM 18, 6, 341-3~3 (1975)

[HS] Hum, J. W., and T.G. Szymanski. A fast algorilhm for computing longest common subse

quences, CACM 20,5,350-353 (1977).

[MA] Manmez, H.M. (ed.), Mathematical and compmational probiems in the analysis of molec

ular sequences, Bullerin oj .t!arhematical Biology (Special Issue honoring ~I. O. Dayhoff)

46.4,1984.

[ME] Mehlhorn, K. Data structures and algorlrhms I: sorring and searching, Springer-Verlag,

EATCS Monographs on TeS (1984).

[i\1P] Masek, W.!., and M.S. Paterson. A faster algorithm for computing string editing dis

tances, JCSS 20,18-31 (1980).

[NY] Nakatsu, N. , Kambayashi, Y. and Yajima, S. A Longest Common Subsequence .AJgo

ritlun Suitable for Similar Text Strings, Acta fnjomlatica 18, 171-179 (1982).

[SK] Sankoff, D. and J. B. Kruskal (eds.), Time warps, string edits and macromolecules: rhe

rheory and practice of sequence comparisons, Addison- Wesley, Reading (1983).

[VE] van Emde Boas, P. Preserving order in a forest in less man logaritlunic time and linear

space./nj.ProcLea. 6,3,80-82 (1977).

[WF] Wagner, R. A., and MJ. Fischer, The string to string correction problem, Journal of rhe

ACM 21, I, 168-173 (1974).

	The Longest Common Subsequence Problem Revisited
	Report Number:
	

	tmp.1307986960.pdf.lzeWi

