48 research outputs found

    Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system

    Get PDF
    Observations show that the flow of Rutford Ice Stream (RIS) is strongly modulated by the ocean tides, with the strongest tidal response at the 14.77 day tidal period (Msf). This is striking because this period is absent in the tidal forcing. A number of mechanisms have been proposed to account for this effect, yet previous modeling studies have struggled to match the observed large amplitude and decay length scale. We use a nonlinear 3-D viscoelastic full-Stokes model of ice-stream flow to investigate this open issue. We find that the long period Msf modulation of ice-stream velocity observed in data cannot be reproduced quantitatively without including a coupling between basal sliding and tidal subglacial water pressure variations. Furthermore, the subglacial water system must be highly conductive and at low effective pressure, and the relationship between sliding velocity and effective pressure highly nonlinear in order for the model results to match GPS measurements. Hydrological and basal sliding model parameters that produced a best fit to observations were a mean effective pressure N of 105 kPa, subglacial drainage system conductivity K of 7 × 109 m2d-1, with sliding law exponents m = 3 and q =10. Coupled model results show the presence of tides result in a ~ 12% increase in mean surface velocity. Observations of tidally-induced variations in flow of ice-streams provide stronger constraints on basal sliding processes than provided by any other set of measurements

    A numerical study of glacier advance over deforming till

    Get PDF
    The advance of a glacier over a deforming sediment layer is analysed numerically. We treat this problem as a contact problem involving two slowly-deforming viscous bodies. The surface evolution of the two bodies, and of the contact interface between them, is followed through time. Using various different non-linear till rheologies, we show how the mode of advance depends on the relative effective viscosities of ice and till. Three modes of advances are observed: (1) overriding, where the glacier advances through ice deformation only and without deforming the sediment; (2) plug-flow, where the sediment is strongly deformed, the ice moves forward as a block and a bulge is built in front of the glacier; and (3) mixed-flow, where the glacier advances through both ice and sediment deformation. For the cases of both overriding and mixed-flow, an inverse depth-age relationship within the ice is obtained. A series of model experiments show the contrast in effective viscosity between ice and till to be the single most important model parameter defining the mode of advance and the resulting thickness distribution of the till. Our model experiments indicate that the thickness of the deforming till layer is greatest close to the glacier front. Measurements of till thickness taken in such locations may not be representative of deforming till thickness elsewhere. Given sufficiently large contrast in effective viscosity between ice and till, a sediment bulge is formed in front of the glacier. During glacier advance, the bulge quickly reaches a steady state form strongly resembling single-crested push moraines. Inspection of particle paths within the sediment bulge, shows that particles within the till travel at a different speed from the bulge itself, and the push moraine to advance as a form-conserving non-linear wave

    Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015

    Get PDF
    The Greenland Ice Sheet (GrIS) is losing mass in response to recent climatic and oceanic warming. Since the mid-1990s, tidewater outlet glaciers across the ice sheet have thinned, retreated, and accelerated, but recent changes in northern Greenland have been comparatively understudied. Consequently, the dynamic response (i.e. changes in surface elevation and velocity) of these outlet glaciers to changes at their termini, particularly calving from floating ice tongues, is poorly constrained. Here we use satellite imagery and historical maps to produce an unprecedented 68-year record of terminus change across 18 major outlet glaciers and combine this with previously published surface elevation and velocity datasets. Overall, recent (1995–2015) retreat rates were higher than at any time in the previous 47 years (since 1948). Despite increased retreat rates from the 1990s, there was distinct variability in dynamic glacier behaviour depending on whether the terminus was grounded or floating. Grounded glaciers accelerated and thinned in response to retreat over the last 2 decades, while most glaciers terminating in ice tongues appeared dynamically insensitive to recent ice tongue retreat and/or total collapse. We also identify glacier geometry (e.g. fjord width, basal topography, and ice tongue confinement) as an important influence on the dynamic adjustment of glaciers to changes at their termini. Recent grounded outlet glacier retreat and ice tongue loss across northern Greenland suggest that the region is undergoing rapid change and could soon contribute substantially to sea level rise via the loss of grounded ice

    Draping or overriding: The effect of horizontal stress gradients on internal layer architecture in ice sheets

    Get PDF
    Internal isochronic layers in ice sheets sensed by radar show two characteristic relationships to the basal topography: Either they override it, with layers above the crests of rises lying essentially flat, or they drape over it, with the layers following rises and falls in basal topography. A mechanical theory is presented which shows that overriding is the expected behavior when topographic wavelengths are comparable with or less than the ice thickness, while draping occurs at longer wavelengths. This is shown with analytical perturbation solutions for Newtonian fluids, numerical perturbation solutions for nonlinear fluids, and finite element solutions for nonlinear fluids and large-amplitude variations. Bed variation from topography and changes in the basal boundary condition are considered, for fixed bed and sliding beds, as well as three-dimensional flows and thermomechanically coupled flows. In all cases, the dominant effect on draping/overriding is the wavelength of the topography or variation in basal boundary conditions. Results of these full mechanical system calculations are compared with those from the shallow ice approximation and the longitudinal stress approximation. Some calculations are carried out for zero accumulation, where the age of the ice and therefore isochrone geometry is not defined. It is shown that there is a close relationship between isochrones and streamlines, and that they behave similarly when bed wavelength divided by the ice thickness is small compared with the ratio of ice velocity and accumulation rate, which is a useful approximation. Numerical comparisons of isochrones and streamlines show them to be virtually coincident

    Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018

    Get PDF
    Evolving conditions at the terminus of Thwaites Glacier will be important in determining the rate of its future sea-level contribution over the coming decades. Here, we use remote-sensing observations to investigate recent changes (2000–2018) in the structure and velocity of Thwaites Glacier and its floating tongue. We show that the main trunk of Thwaites Glacier has accelerated by 38% over this period, while its previously intact floating tongue has transitioned to a weaker mélange of fractured icebergs bounded by sea ice. However, the rate of structural weakening and acceleration was not uniform across the observational period and we identify two periods of rapid acceleration and structural weakening (2006–2012; 2016–2018), separated by a period of deceleration and re-advance of the structurally-intact shear margin boundary (2012–2015). The timing of these accelerations/decelerations strongly suggests a link to variable ocean forcing. The weakened tongue now has some dependency on landfast sea ice for structural integrity and is vulnerable to changes in landfast ice persistency. Future reductions in landfast sea ice could manifest from changes in climate and/or the imminent removal of the B-22A iceberg from the Thwaites embayment. Such changes could have important implications for the integrity of the ice tongue and future glacier discharge

    Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Get PDF
    We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a−1 in 2007 to 1.72 Gt a−1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38% and 46%, higher than in 1995

    Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

    Get PDF
    The effusive six months long 2014-2015 Bárðarbunga eruption (31 August-27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 μg m−3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland

    Ice-stream response to ocean tides and the form of the basal sliding law

    Get PDF
    The response of ice streams to ocean tides is investigated. Numerical modelling experiments are conducted using a two-dimensional flow-line model of coupled ice-stream and ice-shelf flow. The model includes all components of the equilibrium equations, and uses a non-linear viscoelastic constitutive equation for ice. Basal sliding is simulated with a Weertman type sliding law where basal sliding is proportional to some power of the basal shear stress. The response of ice-streams to tidal forcing is found to be profoundly affected by mechanical conditions at the bed. For a non-linear sliding law, a non-linear interaction between the two main semi-diurnal tidal constituents (M2 and S2) can give rise to a significant perturbation in ice-stream flow at the lunisolar synodic fortnightly (MSf) tidal period of 14.76 days. For a linear sliding law, in contrast, no such modulation in flow at the MSf frequency is found. For vertical ocean tides of the type observed on Filchner-Ronne Ice Shelf (FRIS), the amplitude of the horizontal modulation in ice-stream flow at the MSf frequency resulting from a non-linear interaction between the S2 and M2 tidal constitutes can be larger than the direct response at the S2 and the M2 frequencies. In comparison the non-linear interaction between K1 and O1 tidal components is weak. As a consequence, modelled ice-stream response to mixed oceanic tides of the type found on FRIS is stronger at the MSf period of 14.76 days than at both the semi-diurnal and diurnal frequencies, while at the same time almost absent at the similar Mf period of 13.66 days. The model results compare favourably with measurements of tidally induced flow variations on Rutford Ice Stream (RIS), West Antarctica. On RIS a strong tidal response is found at the MSf frequency with a smaller response at the semi-diurnal and diurnal frequencies, and almost no response at the Mf frequency. A non-linear viscous sliding law appears to have the potential to fully explain these observations

    Ice-shelf buttressing and the stability of marine ice sheets

    Get PDF
    Ice-shelf buttressing and the stability of marine-type ice sheets are investigated numerically. Buttressing effects are analysed for a situation where a stable grounding line is located on a bed sloping upwards in the direction of flow. Such grounding-line positions are known to be unconditionally unstable in the absence of transverse flow variations. It is shown that ice-shelf buttressing can restore stability under these conditions. Ice flux at the grounding line is, in general, not a monotonically increasing function of ice thickness. This, possibly at first somewhat counterintuitive result, is found to be fully consistent with recent theoretical work. Grounding lines on retrograde slopes are conditionally stable, and the stability regime is a non-trivial function of bed and ice-shelf geometry. The stability of grounding lines cannot be assessed from considerations of local bed slope only
    corecore