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[1] Internal isochronic layers in ice sheets sensed by radar show two characteristic
relationships to the basal topography: Either they override it, with layers above the crests
of rises lying essentially flat, or they drape over it, with the layers following rises and
falls in basal topography. A mechanical theory is presented which shows that overriding is
the expected behavior when topographic wavelengths are comparable with or less than
the ice thickness, while draping occurs at longer wavelengths. This is shown with
analytical perturbation solutions for Newtonian fluids, numerical perturbation solutions for
nonlinear fluids, and finite element solutions for nonlinear fluids and large-amplitude
variations. Bed variation from topography and changes in the basal boundary condition are
considered, for fixed bed and sliding beds, as well as three-dimensional flows and
thermomechanically coupled flows. In all cases, the dominant effect on draping/overriding
is the wavelength of the topography or variation in basal boundary conditions. Results
of these full mechanical system calculations are compared with those from the shallow ice
approximation and the longitudinal stress approximation. Some calculations are carried
out for zero accumulation, where the age of the ice and therefore isochrone geometry is
not defined. It is shown that there is a close relationship between isochrones and
streamlines, and that they behave similarly when bed wavelength divided by the ice
thickness is small compared with the ratio of ice velocity and accumulation rate, which is a
useful approximation. Numerical comparisons of isochrones and streamlines show them to
be virtually coincident.
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1. Introduction

[2] Radar-echo sounding of cold ice sheets shows the
presence of layers at depth, which are believed to represent
former surfaces of the ice sheet. This paper is predicated on
the basis that this is true. The layers arise when snowfall
events containing material with unusual electric properties,
particularly unusual ion concentrations, is deposited on the
ice surface [e.g., Hempel et al., 2000]. A typical source for
these anomalous materials is volcanic eruptions. Near the
surface of the ice sheet, isochronic layers are generally flat,
with occasional synclines and anticlines. In general, these
near-surface features are believed to be caused by spatial
variations in the accumulation rate of snow, with synclines
for example being associated with increased accumulation

rate. At depth, isochronic layers are much more irregular.
Sometimes they drape over and are subparallel to the bed,
while at other times they override it, lying almost flat over
the most extreme topography. More rarely, they dip toward
and outcrop at the bed, showing not only that basal melting
has occurred, but that there is spatial variation in the amount
of basal melting. This can either be due to variation in the
geothermal heat flux or to variations in the frictional heating
near or at the base of the ice sheet, attributable to unusual,
and therefore interesting, dynamical features.
[3] To exemplify some of these statements, Figure 1

shows an example from near Lake Vostok. The ice flows
outward from Ridge B. Three areas are circled: (zone a) a
wide depression, (zone b) an area with mountains of
constant maximum elevation, and (zone c) an area contain-
ing one or two mountains with much greater elevation than
their neighbors. It is intuitively obvious that solitary moun-
tains will disturb layers around them. In this paper we are
concerned with the contrast between zones a and b in
Figure 1. In the former, the lines drape the depression,
while in the latter the lines override the depressions. While
spatial variation in the accumulation rate is believed to be
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the dominant source of undulations in isochronic layers,
nearer the bed mechanical effects are expected to play a role
at least as significant as that of basal melting. The purpose of
this paper is to investigate howmechanical effects affect layer
architecture. This paper does not investigate small-scale
structures such as folds or thrusts. Surprisingly little work
has been done on how glacier mechanics affects isochrone
architecture. A classic paper is by Weertman [1976], who
looks at how changes in the basal boundary from frozen to
sliding can lead to dips in isochrones. This can be called the
‘‘Weertman effect,’’ and the opposite transition, the ‘‘reverse
Weertman effect.’’ Another paper is by Pattyn [2002], who
looks at the effect of topography on isochrone architecture
using the longitudinal stress approximation.
[4] Following Gudmundsson [2003], one can immediately

anticipate that two factors will have a dominating effect: the
wavelength of the undulations and the slip ratio (the ratio of
the sliding velocity to the difference in velocity between ice
surface and bed). These effects are investigated in this paper
using flows on infinite sections. The benefit of this config-
uration is that it isolates other influences, allowing us to
focus on the effects of mechanics, but it creates complica-
tions with regards to the role the vertical velocity plays in
developing isochrones, since this velocity arises to accom-
modate mass influx at the upper surface and efflux at the
lower surface. Fortunately, in the limiting case of no
accumulation/no melting, it turns out (and is shown here)
that isochrones can be identified with streamlines (in plane
flow). This remains a good approximation provided that the
product of the ratios of accumulation rate to horizontal
velocity and wavelength of bedrock roughness to ice
thickness remains small.
[5] We use three different techniques to compute the flow

down infinite sections. First, we use the analytical theory
developed by Gudmundsson [2003], applicable to fluids
with a linear rheology, to exemplify the basic effects. This
assumes that the amplitude of bed perturbations is ‘‘small’’;
that is, the amplitude of the bed perturbations is a small
fraction (<10%) of the ice thickness. Second, we use a
semianalytical perturbation theory developed by Hindmarsh
[2004], which deals with nonlinear rheologies and nonsmall
accumulation rates to generalize the examples to more
realistic cases. This theory also only treats ‘‘small’’ pertur-
bations in the bedrock. Both perturbation theories can deal

with three-dimensional flows. Finally, plane-flow finite
element calculations consider nonlinear rheologies where
the bedrock perturbation amplitudes are not small. In the
formulation of the finite element approach it is assumed that
the accumulation rate is zero, but some useful results which
show how nonzero accumulation rates affect isochrone
architecture can be obtained and can be shown to be decent
approximations.
[6] One use of isochronic data is the investigation of the

spatial variation of accumulation rate. This remains a large
computational problem, acutely so in inverse mode, and the
use of vertically integrated approximations such as the
shallow ice approximation (SIA) remains essential. In
particular, ‘‘stream-tube’’ approximations are useful, where
the ice upper and lower surface geometry are given together
with the accumulation rate, and mean velocity fields are
computed from mass balance, using the SIA and continuity
to compute the distribution of horizontal and vertical
velocity with depth. This procedure has many attractions;
rather than tuning a model to give an approximation to the
topography, one automatically uses the correct topography,
and comparison of layer architecture with data is consider-
ably facilitated. One factor of crucial importance is how
predictions of layer architecture made by the SIA and the
full system of balance equations differ. This allows the
determination of whether discrepancies between vertically
integrated models and data can be attributed to the use of
simplified mechanical models. Motivated by this, we pres-
ent extensive series of results where steady geometries of
ice flows are computed using the full system of equations,
and isochrone architectures for this particular ice surface
geometry are computed for both the full system and for the
SIA. While the SIA steady geometry could and often would
be different, the comparisons we make are more useful for
the reasons outlined above.
[7] The results of all three modes of analysis show that as

expected, wavelength is the dominant effect. Isochrones
drape around basal topography at long wavelength, while at
short wavelength, isochrones override basal topography. In
this paper, a long wave has wavelength much greater than
the ice thickness, while a short wave has wavelength less
than or approximately equal to the ice thickness.
[8] The paper plan is as follows: the governing equations,

their scalings and linearizations are presented briefly in

Figure 1. Radargram showing draping over long-wavelength troughs and overriding of short
wavelength features. Layers drape over the wide trough (zone a), but override the closely spaced
mountains (zone b). Single mountains disturb layers whatever their horizontal dimension (zone c).
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sections 2 and 3. The relationship between streamlines and
isochrones is discussed in section 4. Solutions to the
governing equations are presented in section 5, and the
results are summarized in the final section. Three appendi-
ces present technical details of the formulation and solution
of the equations.

2. Stokes Equations

[9] A classic glaciological configuration of flow down the
infinite plane is used, and cyclic (repeated) boundary con-
ditions are applied to force variation at the desired wave-
length, either by variations in the bed topography or the
basal slipperiness. The setup of flow down an infinite plane
is illustrated in Figure 2. Dimensional quantities are repre-
sented by a tilde and nondimensional quantities without a
tilde. Fourier transforms are represented by a caret. The
coordinates are (~x;~y;~z), where ~z is perpendicular to the base
plane and ~x is in the zeroth-order flow direction. The ~z
direction is called ‘‘vertical’’ and the ~r = (~x;~y) plane
‘‘horizontal’’. The upper and lower surfaces are given by
~z = ~s(~r;~t), ~z = ~b(~r;~t) respectively, the thickness of the ice is
given by ~H(~r;~t) = ~s(~r;~t) � ~b(~r;~t) and ~T represents time.
Subscripts (s), (b) indicate evaluation at the surface or base,
respectively. The operators rrrrH, rrrrH

� , represent the horizon-
tal gradient and divergence, respectively.
[10] The three-dimensional velocity field is conveniently

represented by the vertical velocity ~w and the horizontal
velocity vector ~u = (~ux, ~uy), and we also use ~v = (~ux, ~uy, ~w).
The governing equations, which apply to all ~r are

#

H � ~uþ @@~z~w ¼ 0 ~b � ~z � ~s; ð1Þ

#� ~Sþ ~r~g ¼ 0 ~b � ~z � ~s; ð2Þ

~S sð Þ � n sð Þ ¼ 0 ~z ¼ ~s; ð3Þ

v bð Þ ¼ 0; no slip

see equation 6ð Þð Þn bð Þ � v bð Þ ¼ ~m; sliding

9=
; ~z ¼ ~b; ð4Þ

Here (1) expresses conservation of mass in the ice; (2)
describes conservation of momentum in the ice, and (3) and
(4) are momentum equation boundary conditions, where ~S
is the stress tensor, ~r is the density of ice, ~g = ~g(e, 0, �1) is
the gravitational acceleration vector and n is the outward
normal vector at the indicated surface. The horizontal
component of gravity e~g is functionally equivalent to a
slope of e. The constitutive relations comprise (1) a
nonlinear viscous relationship within the ice,

~e ¼ ~Ac ~tj jn�1~t; ð5Þ

where ~e is the strain rate tensor, ~t is a second invariant of
the deviator stress tensor ~T, n is the Glen index and ~Ac is a
rate factor; and (2) an isotropic sliding relation of the form

~uk bð Þ ¼ ~As
~T t bð Þ
�� ��‘�1 ~T t bð Þ=~p

n
e ; ð6Þ

where ~uk(b) is the sliding velocity, ~T t (b) is the basal tangential
traction, ‘ is the sliding index, ~As is the sliding rate factor, ~pe =
�~Tn � ~pw is the effective pressure, ~Tn is the normal traction,
~pw is the subglacial water pressure and v is a further index.
[11] The heat equations are given by

@~t~qþ ~v � r~q ¼ ~k

#2~qþ
~D

~r~c
~b ~r;~tð Þ � ~z � ~s ~r;~tð Þ; ð7Þ

~q sð Þ � ~qs ¼ 0 ~z ¼ ~s ~r;~tð Þ; ð8Þ

~Ki

#~q bð Þ � n bð Þ ¼ �~QG ~z ¼ ~b ~r;~tð Þ: ð9Þ

Equations (7)–(9) represent conservation of heat in the ice,
where ~q is the temperature in the ice, ~qs is the prescribed
surface temperature, ~k is the thermal diffusivity of ice, ~c is

the specific heat capacity, ~D =
1

2
trace(~t � ~e) is the

dissipation, ~T is the deviatoric stress and ~Ki is the thermal
conductivity of ice and ~QG is the geothermal heat flux.
When modeling the flow of heat, only cases where the bed
is below melting point (i.e., no sliding) are considered.
[12] The assumption of quasiuniform flow states that such

a flow ~v(QU), where superscript (QU) indicates a quasiuni-
form flow, is given by

~v QUð Þ ¼ ~v
QUð Þ
~x ; 0;~v

QUð Þ
~z

� � #� ~v QUð Þ ¼ 0;

where ~v(QU) is treated as being independent of ~r, but @~x~v~x
(QU)

may be nonzero. Essentially, it is being assumed that over
one wavelength @~x~v~x

(QU) is sufficiently small that the ~r
independence of ~v(QU) is a valid assumption. This assump-
tion is applied to the base flow about which linearization is
performed.
[13] The upper and lower surface kinematical conditions

are

@~t~sþ ~u sð Þ�rrrr~s ¼ ~w sð Þ þ ~a;

~u bð Þ�rrrr~b ¼ ~w bð Þ þ ~m;

9=
;; ð10Þ

Figure 2. Illustration of the problem set-up and coordinate
system.
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where a, m are the surface accumulation and basal melting
respectively. The age equation is simply the advection
equation for the age ~X with a source term,

@~t ~X þ ~v � rrrr~X ¼ 1; ð11Þ

with boundary conditions

~X ¼ 0;~v � n bð Þ < 0: ð12Þ

3. Scaling, Mapping, Linearizations, and
Solution Methods

3.1. Scaling

[14] The main function of dimensional analysis as used in
this paper is to reduce the number of free parameters. In the
related analysis of Raymond and Gudmundsson [2005],
there are two free parameters, the slip ratio and the mean
slope e. In some cases here, we also consider nonzero
accumulation, which is a third free parameter. Other param-
eters (e.g., ice thickness) are shown by the dimensional
analysis not to be truly independent parameters. The results
of Raymond and Gudmundsson [2005] suggest that slope is
less important than slip ratio, and for reasons of space slope
and accumulation rate are not investigated systematically.
[15] This paper deals with many distinct but closely

related quantities, and the notation follows a fairly strict
system. A superscript with parentheses containing 0 or 1
refers to the perturbation order in the linearization parameter
m introduced below in (14). Superscripts without parenthe-
ses always occur at the rightmost end of the superscript
chain, and are exponents. Subscripts without parentheses
occur at the leftmost end of the subscript chain. These can
refer to tensor or vector components, or to other quantities,
which will be clear from the context. Parenthetic subscripts
are either (s) or (b), and refer to evaluation of the quantity at
the surface and base, respectively. Note that the subscripts
without parentheses on ~A refer to deformation model and
not position of evaluation. For example, txz(b)

(1)2 is the
dimensionless first-order horizontal plane shear stress in
the x-direction, raised to the power 2, evaluated at the base.
[16] The variables are nondimensionalized as follows.

Thicknesses H, elevations z, s, b and horizontal positions r =
(x, y) are scaled by ~H*, (asterisk subscripts imply a scale
magnitude). Dimensionless field quantities within the ice are
expressed in a normalized vertical coordinate z defined by

0 � z ¼ ~H�1 ~z� ~b
� �

¼ H�1 z� bð Þ � 1: ð13Þ

Hindmarsh and Hutter [1988] and Hindmarsh [1999] write
out the associated differential transforms. In physical units
the operators rH�,rH act in the (~r;~z) coordinate system,
while in the dimensionless system they act in the (r, z)
system. Pressure and stresses are scaled by e~r~g ~H*, where ~g =j~gj is the acceleration due to gravity. In dimensionless form,
the gravity vector g has components (e, 0,�1) where e2� 1.
The velocity scale ~v* is chosen so as to set the horizontal
velocity ux for the rheologically equivalent but uniform-
bedded cases equal to unity. Specifically, for the linearization
studies, this means that ux(s)

(0) = 1. The accumulation rate a,
melting ratem and the velocity v are scaled by ~v*, the flux has

scale given by ~q* = ~v*
~H* and time is scaled by~t* =

~H* /~v*.
These scalings imply ~Ac* = ~v*/(

~H* ~t*n), ~As* = ~v*/~t*
(‘�v).

3.2. Linearization for Small-Amplitude Perturbations

[17] We employ linearization techniques to increase the
range of situations that can be investigated: in this study,
three dimensional flows and thermomechanical coupling.
These studies involve far less computational effort than the
finite element computations discussed below. The lineariza-
tions do assume ‘‘small’’ topography, i.e., topographic
amplitudes less than 10% of the ice thickness, which is an
ideal that is fairly frequently achieved under ice sheets.
Finite (i.e., with no restriction to smallness) amplitudes are
considered in the next section.
[18] Linearizations involve a basic flow about which

small perturbations are permitted. In this case, the basic
flow is a uniform shearing flow along the infinite plane. As
well as internal shearing, sliding over the bed is permitted.
Furthermore, we consider the flow of heat within the ice,
warmed at the bed by geothermal heating and moving
through the ice by advection and conduction. Even though
the flow is uniform, this assumption can be relaxed slightly
to include quasiuniform flows, whereby a nonzero accumu-
lation rate is considered, on the understanding that it is
sufficiently small not to increase flow speeds over one
wavelength. This accumulation rate advects both cold and
tracers (e.g., age markers) downward.
[19] Specifically, in certain of the results discussed below,

the relevant field variables are subsequently linearized with
a small parameter m about a base case solution (steady
uniform flow down the infinite plane), for example,

H ¼ H 0ð Þ þ mH 1ð Þ r; tð Þ v ¼ v 0ð Þ þ mv 1ð Þ r; z; tð Þ; ð14Þ

etc. These are used to derive a set of zeroth- and first-order
equations expressing conservation of mass and momentum.
A Fourier transform in the horizontal plane is then applied
to the first-order equations, and the first-order fields can be
expressed as plane waves,

H 1ð Þ ¼ < Ĥ 1ð Þ exp lt � ik � rð Þ
	 


v 1ð Þ ¼ < v̂ 1ð Þ zð Þ exp lt � ik � rð Þ
	 


9=
;; ð15Þ

etc., where < represents the real part. In particular, Ĥ (1) =
ŝ(1) � b̂(1). In (15), l is the eigenvalue, the wave numbers
are given by k = (kx, ky) and the caret indicates the Fourier
coefficient of the transform over the r-plane only. The
scaling is constructed to ensure that H(0) and as many more
as possible of the other zeroth-order quantities are unity.
Details are given by Hindmarsh [2004]. In addition, the
case of a Newtonian rheology is also considered, where
analytical solutions exist [Gudmundsson, 2003].

3.3. Finite Element Solution for Finite
Amplitude Perturbations

[20] In addition, finite element solutions of the full Stokes
equations in plane flow are computed using the MARC
software package [Leysinger Vieli and Gudmundsson, 2004;
Raymond and Gudmundsson, 2005]. These permit nonsmall
variations in the basal properties, which is particularly
necessary for the variations in basal slipperiness considered
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here. These are computed for repeated flow sections with
cyclic boundary conditions. No accumulation or basal
melting were specified, implying that the assumption of
quasiuniform flow is not needed. This leads to difficulties
with the usual Glen rheology at small amplitudes, as the ice
becomes very viscous near the upper, traction-free, surface
owing to the low stresses and strain rates. These difficulties
are discussed by Raymond and Gudmundsson [2005], but
we only consider large amplitudes, where strain rates at the
surface are large, and these difficulties do not need to be
considered. We report results for steady state flows only.

4. Relationship Between Isochrones and
Streamlines

[21] Where there is no recharge (accumulation or basal
melting), there is no meaningful solution to the age equation.
In particular, to interpret the finite element solutions, it is
necessary to consider the relationship between isochrones
and streamlines, which are easily computed. In this section
the relationship between the two is examined and it is shown
that streamline geometry gives useful information about
isochrone geometry in plane flow. Streamlines are flow
trajectories. In general, they are not coincident with iso-
chrones. Intuitively, one would expect them to be related, and
we show here that in plane flow, under certain auxiliary
conditions, isochrones and flow lines track each other. For
example, over short distances, if a streamline dips, the
isochrone dips in a similar way.
[22] More specifically, the two lines are approximately

coincident in a particular sense, and it is shown below that
the horizontal gradient of age following a streamline is
smaller than horizontal gradients of age following other
lines (apart from the isochrones), for example, the elevation
z or the normalized elevation z. This is the strongest
statement that can be made; if streamlines and isochrones
were coincident, this horizontal gradient would be zero. In
cases where there is no accumulation rate, one result of this
section is that the streamlines are the limiting isochrone
geometry for very small accumulation rates.
[23] To show this, it is convenient to write the partial flux

q in terms of the overall flux using a shape function [e.g.,
Reeh and Paterson, 1988], w(x, z)

qx x; zð Þ ¼ w x; zð ÞQx xð Þ
w x; 0ð Þ  0

w x; 1ð Þ  1

9=
;: ð16Þ

The steady state age equation in z-coordinates can then be
written

z@xQx � @xðwQxÞ � zða� mÞ � m

H
@zX þ Qx

H
u@xX ¼ 1: ð17Þ

For the next demonstration it is convenient to use the shape
factor as the coordinate system. A further coordinate system
using �w = w(x, z) as the vertical coordinate can then be
defined,

Xw xw; �wð Þ ¼ X x; zð Þ

xw ¼ x; �w ¼ w x; zð Þ

9=
;: ð18Þ

Mathematically, �w is an independent variable while w is a
dependent variable, but numerically they are equal. We are
simply using a new vertical coordinate as it allows us to
explore the relationship between streamlines and isochrones.
This coordinate system is not used in numerical calculations.
This assumes that w increases monotonically with z, which is
equivalent to assuming that there are no reverse (circulatory)
flows. Differential equations can be transformed in (xw, �w)-
coordinates, using the following differential transforms:

@X

@x

@X

@z

2
664

3
775 ¼

1
@w
@x

0
@w
@z

2
664

3
775

@Xw

@xw
@Xw

@�w

2
664

3
775: ð19Þ

There is an important distinction between
@X

@x
, which is the

horizontal gradient of the age X on a line of constant

z (normalized elevation) and
@X

@xw
, which is the horizontal

gradient of the age X on a line of constant w. Substitution of
(18) and (19) into (17) gives

�u
z@xQx � �w@xQx � Qx@xw� zða� mÞ � m

H
@�wXw

þ Qx

H
�u @xwXw þ @xw@�wXwð Þ ¼ 1; ð20Þ

where

�u x; �wð Þ ¼ u x; zð Þ ¼ @w x; zð Þ
@z

:

Equation (20) simplifies immediately to

Qx

H
�u@xwXw þ �u

z@xQx � �w@xQx � z a� mð Þ � m

H
@�wXw ¼ 1;

and then to

Qx

H
@xwXw �

�w a� mð Þ þ m

H
@wXw ¼ 1

�u
; ð21Þ

which is the steady state age equation in (xw, �w)-coordinates.
[24] Since ice is entering from the top of the glacier, both

terms on the left-hand side must contribute to the balance,
while the right-hand side is O(1) by construction.
This implies that @w Xw = O(1/a). (For simplicity, we ignore
the boundary layer at the bottom where �u = O(a), @w Xw =
O(1/a2); the existence of this layer does not affect the
following argument.)
[25] Compare (21)with the same equation in z-coordinates,

Qx

H
@xX � w a� mð Þ þ @xwQx þ m

H
@zX ¼ 1

u
:

Again, @z X = O(1/a). Furthermore, over short range Lx, the
term @xw will be order O(1/Lx), and if Lx < 1/a

Qx

H
@xX � @xwQx

H
@zX � 0;
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implying both terms on the left-hand side are O 1

aLx

� �
and

in particular that

@xX ¼ O 1

aLx

� �
:

However, in (xw, �w)-coordinates, there are no terms in the

age equation (21) of O 1

aLx

� �
. The vertical advection term

and the source term are O(1). The horizontal advection term
can be safely written as

@xwX ¼ O 1ð Þ; ð22Þ

showing that it is much smoother than @xX.
[26] Finally, we must deal with the fact that lines of

constant w are not exactly streamlines, even in steady flow.
These are given by contours of qx. It can be readily seen that
@xQx = O(a) and that

@xqx ¼ w@xQx þ Q@xw ¼ wO að Þ þ O 1=Lxð Þ; ð23Þ

meaning that for length scales Lx < 1/a variations in w with
horizontal position make the lead order contribution to the
horizontal gradient of the partial flux qx and thus to
streamline variation. Lines of constant w therefore corre-
spond to streamlines over these short length scales.

[27] The equivalence of lines of constant w with stream-
lines over short distances (equation (23)) and the fact that
the horizontal gradient of the age is very much smaller when
considered along lines of constant w are the basis of the
statement that isochrones track streamlines over distances
shorter than 1/a. This distance is measured in ice sheet
thicknesses. If a is 0.01 (i.e., the accumulation is one
hundredth of the ice velocity), then the distance is 100 ice
sheet thicknesses. Another way of looking at this is to say
that streamlines are the limiting geometry of isochrones as
the accumulation rate tends to zero.
[28] A further useful observation is that a feature of the

isothermal shallow ice approximation is that w (z) is a uniform
function. Thus, for the isothermal SIAwith constant slip ratio,
the property of tracking a streamline also implies tracking a
constant normalized elevation. This happens overwavelengths
that are ]O(1/a), but are still sufficiently long that the SIA
remains valid.

5. Solutions

5.1. Analytical Perturbation Solutions for Newtonian
Rheology

[29] Our first question is whether we can relate simply
isochrone geometry to wavelength. A feature common to all
three types of analysis is comparing the results to those
obtained with the SIA, which is the mechanical approxima-
tion most commonly used in large-scale ice sheet modeling,

Figure 3. Comparison of streamlines from full system (solid line), longitudinal stress approximation
(small circles) and SIA (dotted line), from analytical solutions for Newtonian rheology. The longitudinal
stress approximation isochrones almost overlie the full system. All cases are for a bed perturbation
amplitude of 0.1. Streamlines closely correspond to isochrones (see Figure 9). (a, c) Comparisons for the
indicated wavelength. (d) Isochrone deflection, normalized by ice thickness of the full-system isochrones
from the SIA isochrones as a function of elevation and wavelength.
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especially of isochrones and other tracers. Note from the
immediately preceding discussion that this involves looking
at the deflection from a constant normalized elevation in
cases where the material properties of the ice and bed are
uniform. Here we consider a simple Newtonian material.
and look at isochrone deflection from the SIA.
[30] The analytic perturbation solution of Gudmundsson

[2003] (full system) and Hindmarsh [2004] (longitudinal
stress approximation) can be used to demonstrate the basic
effects of wavelength on streamline geometry and thus on
isochrone architecture. The solutions have a free surface
which responds to perturbations in the basal topography
and, where sliding is occurring, in the slipperiness. The
solutions apply to a linear rheology with zero accumulation
and melting.
[31] The shallow ice approximation predicts velocity

shape functions to be independent of wavelength, meaning
that flow lines are maintained at the same normalized
coordinate provided the rate factor distribution does not
change with horizontal position. To order O(aLx) this is also
true for isochrones. Amoremathematical discussion of shape
functions and how they are used is given in Appendix C.
[32] Figure 3 demonstrates the effects of non-SIA stresses

on isochrone elevation by using the Gudmundsson [2003]
solution in equation (A14). Also shown are isochrones
computed using the longitudinal stress approximation
(LSA) of Blatter [1995], using the analytical solution for
a Newtonian rheology [Hindmarsh, 2004, Appendix C], as

well as SIA isochrones. As explained above, the full-system
(FS) geometry is used for all cases; this only introduces a
small error as the transfer of basal topography to surface
topography is very similar for all the cases. The figure
clearly shows that at relatively short wavelengths, FS
isochrones override while SIA isochrones drape, but at long
wavelengths, as expected, the SIA and FS isochrones are
coincident. More surprising is the degree to which the LSA
approximation isochrones are virtually coincident with the
FS isochrones over a broad range of wavelengths.

5.2. Numerical Solutions for Finite
Amplitude Perturbations

[33] Having obtained some rather straightforward results
for a Newtonian fluid, our next question is to ask whether
they hold for a material with a more complicated rheology.
In partial answer, we introduce a Glen (power law) rheol-
ogy, sliding at the bed with, in certain cases, spatial
variation in the bed slipperiness.
[34] Details of these finite element calculations are given in

Appendix B. Since there is no surface mass exchange, ages
and therefore isochrones are not meaningfully defined. How-
ever, as shown in section 4 and Figure 9 in section 5.3.1,
streamlines and isochrones are virtually coincident over
short wavelengths. Thus we present results for streamlines
in this section, but they also apply to isochrones. Cyclic
boundary conditions are applied at the upstream and down-
stream ends.

Figure 4. Calculation showing effect of bed perturbations on full system finite amplitude calculations of
streamlines/isochrones. Ice is fixed to the bed. Solid lines are full-system (FS) isochrones, dash-dotted
lines are shallow-ice approximation (SIA) isochrones, and dotted lines and shading are contours of
horizontal velocity. Bed perturbation amplitude is 0.2. Four plots are for indicated wavelengths, in units
of ice thickness. Overriding of FS isochrones occurs for short wavelengths; draping occurs at long
wavelengths. SIA isochrones always show draping.
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5.2.1. Perturbation to Basal Topography, No Sliding
[35] In these calculations we repeat the perturbation anal-

ysis carried out for a linear rheology, using a nonlinear
rheology. Figure 4 shows FS and SIA streamlines for flows
with fixed beds, at different wavelengths. The bed topogra-
phy is undulating. The FS solution shows overriding at short
wavelengths and draping at longwavelengths. The horizontal
velocity contouring shows that the flow stagnates in hollows
at short wavelengths, which leads to the overriding.
5.2.2. Perturbation to Basal Topography,
Constant Sliding
[36] We now consider the effect of sliding on layer

geometry. Figure 5 shows FS and SIA streamlines for flows
with sliding at the beds with constant mean slip ratio Co = 10,
at different wavelengths. The bed topography is undulating.
As with the fixed bed, the FS solution shows overriding at
short wavelengths and draping at long wavelengths.
5.2.3. Flat Bed, Sinusoidal Slipperiness Variation
[37] A further means of basal forcing is horizontal vari-

ation in the basal slipperiness, which affects the vertical
distribution of flux. Figure 6 shows FS and SIA streamlines
for flows with sliding at the beds with sinusoidally varying
slipperiness and mean slip ratio Co = 10, amplitude 0.2. In
this case the FS and SIA streamlines are virtually coinci-
dent. At long wavelength there is a marked surface re-
sponse, and the upper streamlines track the upper surface.
5.2.4. Flat Bed, On-Off Sliding
[38] This calculation is aimed at investigating the Weert-

man effect [Weertman, 1976] at no-slip/slip boundaries.

Figure 7 shows FS and SIA streamlines for flows with sliding
at the beds in the middle section and a fixed bed at the edges.
Where the bed is sliding, the mean slip ratio is Co = 10. The
bed is flat. Again, there is a strong surface response at long
wavelength, but here the FS and SIA streamlines are rather
different, especially toward the base of the glacier.
5.2.5. Amplitude Effects: Perturbation to Basal
Topography, No Sliding
[39] By construction analyses using linearization methods

assume that amplitude of response is directly proportional to
forcing. In these ‘‘finite amplitude’’ calculations we inves-
tigate this assumption. Figure 8 shows the effect of bed
topography amplitude on isochrone architecture for flow
with a fixed bed. At greater amplitude the FS solution
shows that overriding is more marked, both for the short
wavelength case and the longer wavelength case. It seems
that as the amplitude increases, the thickness of the stagnant
zone increases, which explains this behavior. Similar
effects for very short wavelength flows were noted by
Gudmundsson [1997].

5.3. Numerical Perturbation Solutions for
Nonlinear Rheologies

[40] Perturbation solutions for nonlinear rheologies are
computed numerically using the methodology described by
Hindmarsh [2004]. Isothermal and thermomechanically
coupled cases are presented. Extensions to this theory are
presented in Appendix A, which considers thermal coupling
and the perturbed age equation. Isothermal results are

Figure 5. Calculation showing effect of bed perturbations on full system finite amplitude calculations of
streamlines/isochrones. Ice is sliding over bed with mean slip ratio Co of 10. See Figure 4 caption for
meaning of different lines. Overriding of FS isochrones occurs for short wavelengths; draping occurs at
long wavelengths. SIA isochrones always show draping.
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presented in a dimensionless system, with one consistent set
of units roughly corresponding to an ice-mass with ~Ac = 5 �
10�24Pa�3.s, ~a = 0.1m.a�1, ~r = 917kg.m�3, ~g = 9.81m.s�2,
~H = 2000m. The parameters as specified create an upper
surface velocity of roughly 5 � 102 m.a�1. The Glen index
n = 3. The thermally coupled results are presented in
physical units.
[41] Also discussed are isochrones computed using the

longitudinal stress approximation of Blatter [1995], using
the perturbation method of Hindmarsh [2004]. The reduced
set of equations used here corresponds to model LMLa in
that paper.
[42] Various cases repeating the studies for fixed bed and

sliding with varying bed topography were made (not
shown), which gave similar results. Some computations
were carried out at very high slip ratio, but the same basic
pattern of overriding at short wavelengths was still main-
tained. Amplitude effects are an intrinsically nonlinear
phenomenon which cannot be investigated by linearized
techniques.
5.3.1. Relationship Between Streamlines
and Isochrones
[43] First, we wish to demonstrate the validity of the

analysis presented in section 4 concerned with the relation-
ship between streamlines and isochrones. Figure 9 demon-
strates the close relationship between isochrones and
streamlines for FS plane flow. This correspondence under-
lies the applicability of the finite element streamline calcu-

lations to understanding isochrone behavior. Superimposed
on the FS isochrones are markers indicating the longitudinal
stress approximation. These are virtually coincident, show-
ing that the longitudinal stress approximation gives remark-
ably accurate isochrones.
5.3.2. Three-Dimensional Effects
[44] Although it is not usually apparent in radargrams,

bedrock topography is three-dimensional and the transverse
variation is expected to affect radar line geometry. Figure 9
also shows steady isochrones for three-dimensional flows.
Four different configurations are shown, indicated in the
caption, with (Figure 9a) and (Figure 9c) having infinite
transverse wavelengths, and (Figures 9b and 9b) unit
transverse wavelengths. The shorter of the two wavelengths
Lx, Ly determines whether overriding or draping occurs.
Superimposed on the FS isochrones are markers indicating
the longitudinal stress approximation. Again, these are
virtually coincident with the FS solution.
5.3.3. Thermomechanical Coupling
[45] Finally, the question arises as to whether additional

physical processes will affect the geometry of radar lines.
Figure 10 shows steady isochrones for a thermomechani-
cally coupled flow. In such flows there are four free
dimensionless parameters corresponding to slope, surface
temperature, geothermal heat flux and accumulation rate.
Presenting the results in a dimensionless system overcom-
plicates matters unnecessarily for the simple demonstration
required here. The base flow is 2500 m thick, with surface

Figure 6. Calculation showing effect of sliding perturbations on full-system finite amplitude
calculations of streamlines/isochrones. Ice is sliding over bed with mean slip ratio Co of 10, but with
sinusoidally varying slipperiness with amplitude 0.2. Bed is flat. See Figure 4 caption for meaning of
different lines. Isochrone geometry is mainly determined by surface response, which is stronger at long
wavelengths. SIA isochrones correspond to FS isochrones.
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temperature �36.125�C, slope 0.0025, accumulation rate
0.1 m yr�1 and geothermal heat flux 50 mW m�2. In the
base flow, the basal temperature was computed to be
�1.6�C.
[46] Cases with wavelength 0.4 times the ice thickness

and 4 times the ice thickness are shown. The usual pattern is
demonstrated, with isochrones tending to override at shorter
wavelengths and drape at longer wavelengths. Some intri-
cate temperature perturbations induced by the presence of
basal topography do not apparently affect the dominance of
mechanical effects. As before, the longitudinal stress ap-
proximation is remarkably accurate.
5.3.4. Parameter Studies
[47] We have focused on the effects of wavelength on

radar layer geometry. Gudmundsson [2003] shows that two
further relevant parameters are slope and slip ratio. Sum-
maries of calculations varying these two parameters are
presented here.
[48] Figure 11 shows some extended parameter studies.

Figure 11a is a similar diagram to 3 d, showing deflection
from the SIA prediction as a function of elevation and
wavelength. As wavelength gets shorter, the point of maxi-
mumdeflectionmoves downward, but at wavelengths shorter
than one ice sheet thickness, the longitudinal stress approx-
imation becomes poor. At longer wavelengths, rather greater
than the ice thickness, the LSA is excellent. The deflection
pattern for sliding shows a more complex dependence on
wavelength, and the point of maximum deflection is higher

than in the case of no slip. However, the difference between
sliding and no sliding is less than that caused by wavelength.
[49] Figure 11b shows the effect of slope and wavelength

on maximum deflection. Wavelength has the dominant
effect, and where slope becomes comparably important it
is at longer wavelengths where the deflection is lower.
[50] Figure 11c shows the effect of slip ratio and wave-

length on maximum deflection. Again, wavelength has the
dominant effect, although the maximum deflection is sen-
sitive to slip ratios where this value is around 1.
[51] Figure 11d shows, in more detail, for the case of a

fixed bed, the dependence of the maximum deflection on
the two orthogonal wavelengths. This figure supports the
statement made above that the shorter of the wavelengths
determines the deflection.

6. Conclusions and Discussion

[52] 1. Isochrones track streamlines for sufficiently short

wavelengths ~Lx � ~H
~ux
~a
in dimensional units or Lx < O(1/a)

in dimensionless units, where the wavelength has been
scaled by the ice thickness. Since the accumulation rate a
is scaled relative to the horizontal velocity, and can thus be
�1, this effect can happen over quite long wavelengths.
[53] 2. Analytical, semianalytical and numerical solutions

all show same features. At short wavelengths streamlines
and isochrones override basal topography, while at longer

Figure 7. Calculation showing effect of sliding perturbations on full-system finite amplitude
calculations of streamlines/isochrones. Ice is sliding over bed in middle and is fixed at edges. Bed is
flat. See Figure 4 caption for meaning of different lines. Isochrone geometry shows Weertman effect
(dipping at no-slip/slip boundary and reverse Weertman effect (rising at slip/no-slip boundary). FS shows
smoother response than SIA, and effect is weak at short wavelengths.
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Figure 8. Calculation showing effect of bed perturbations on full system finite amplitude calculations of
streamlines/isochrones, showing the effect of amplitude on isochrone geometry. Ice is fixed to bed. See
Figure 4 caption for meaning of different lines. Overriding of FS isochrones occurs for short
wavelengths; draping occurs at long wavelengths. Overriding is more marked for greater amplitudes.
Results are compared for two different wavelengths (L = 1, 5) and two different amplitudes (0.1, 0.2).
Dotted line is horizontal velocity.
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Figure 9. Computed isochrones for plane flow, using a perturbation method, full-system nonlinear
rheology (solid line). Also indicated are isochrones computed using longitudinal stress approximation
(circled line nearly coincident with full-system lines). Background contouring is the horizontal velocity.
(a, c) Flow is plane, and the dash-dotted line is streamline. Isochrones and streamlines are coincident in
Figure 9c and mostly coincident in Figure 9a. (b, d) Influence of three-dimensional bed topography on
isochrone architecture using a perturbation method is shown. The horizontal wavelength is indicated,
transverse wavelength is 1; amplitude of transverse perturbation is the same as that of longitudinal
perturbation. Dashed lines are SIA isochrones. Comparison of Figures 9c and 9d shows that isochrone
deflection is dominated by shorter of the two wavelengths, while Figures 9a and 9b show that the
addition of a comparable transverse wavelength does not significantly affect architecture.
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Figure 10. Influence of thermally dependent ice viscosity on isochrone architecture using a perturbation
method, nonlinear rheology. (a, b) Longitudinal wavelength indicated, for indicated wavelength. Also
indicated are isochrones computed using longitudinal stress approximation (dots nearly coincident with
full-system lines). Dash-dotted lines are SIA streamlines. (c, d) Temperature perturbation in �C.
Qualitatively, the results are as for the isothermal cases, showing that the complex thermal structure
seems to be markedly less important than mechanical effects.
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wavelength, they track or drape the basal and surface
topography.
[54] 3. Streamlines have constant normalized elevation

for flows satisfying the SIA. Isochrones show the same
behavior over short wavelengths.
[55] 4. The flow style, overriding or draping, is deter-

mined by the direction of the shorter of the two wavelengths
characterizing any two-dimensional surface. Thus overrid-
ing can occur at long wavelengths in radar lines following
the flow direction, but in such a case one should suspect the
presence of short-wavelength topography orthogonal to the
section.
[56] 5. Flow by sliding does not alter these conclusions.
[57] 6. Thermal coupling does not alter these conclusions.
[58] 7. Isochrones computed using the longitudinal stress

approximation correspond remarkably well to the full-sys-
tem solutions for the small-amplitude cases considered here.
Comparison of finite amplitude LSA and FS solutions is
needed to assess the general validity of this behavior.

6.1. Discussion: Overriding, Draping, and the
Degree of Surface Transfer

[59] We have seen that wavelength has the strongest
signal: At long wavelengths, the isochrones drape, while
at short wavelengths they override. It is known that the
transfer of the basal signal to the surface is wavelength
dependent [Gudmundsson, 2003], with strong transfer at

long wavelength, and extremely limited transfer at short
wavelengths. It is likely that the weak transfer at short
wavelengths and the observations of isochrone overriding
are essentially the same phenomenon.
[60] Gudmundsson [2003] also points out that transfer is

much stronger when the slip ratio is high for intermediate
wavelengths (5 to 10 ice thicknesses). By the argument
presented above, this would imply that the deflection from
the SIA isochrones would be smaller when sliding is
occurring at these wavelengths. This proposition is consis-
tent with Figures 11a and 11c as well Figures 4c and 5c.

6.2. Discussion: Is There a Traction Signal?

[61] Given that glacier mechanics is dominated by two
parameters, wavelength/aspect ratio and slip ratio/traction
number [e.g.,Gudmundsson, 2003], it is somewhat surpris-
ing that the wavelength signal is so much more obvious than
the traction signal.
[62] There are hints that the slip ratio affects the deviation

of FS solutions from SIA solutions. Comparison of
Figures 4a and 5a shows that at short wavelength the mean
difference between FS and SIA is greater when sliding is
occurring, though the degree of overriding (measured by
the flatness of the streamline) is greater for no slip.
[63] Taking into account this observation as well as the

results shown in Figure 11c, one can say that there is a weak
traction/slip ratio signal in layer architecture. The use of this

Figure 11. Studies of deviation from SIA prediction as a function of slope, slip ratio and wavelength
computed using a perturbation method, full-system nonlinear rheology. (a) Isochrone deflection of the
full-system isochrones from the SIA isochrones as a function of elevation and wavelength for no slip
(solid line and background coloring), sliding with slip ratio 10 (dashed line), and longitudinal stress
approximation, no slip (dotted line). (b) Maximum deflection as a function of longitudinal wavelength Lx
and slope e. (c) Maximum deflection as a function of Lx and slip ratio C. (e) Maximum deflection as a
function of Lx and transverse wavelength h Ly.
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to invert for the slip ratio from radar lines, where one of the
wavelength components is unknown, would appear to be
rather difficult.

6.3. Discussion: Why is the LSA So Good?

[64] A second surprise is how good the LSA is. Theory
suggests that it is valid down to wavelengths with dimen-
sion equal to a few ice sheet thicknesses, but the calcula-
tions in this paper show that this is a conservative error
estimate, and that the LSA gives good approximations down
to wavelengths of one ice thickness.
[65] Apparently, the LSA manages to capture the stagna-

tion in hollows, which allows the LSA to be able to
represent overriding. This in turn means that LSA predic-
tions are good in the upper part of the ice, at least for steady
state. One should not expect the LSA to be good near the
base of the ice sheet at short wavelength, but it is here where
quite often radar layer observations cannot be made.

Appendix A: Linearization of the Governing
Equations

A1. Momentum Balance

[66] The linearized stress equations are given by
equations (A1) to (A9) in the work by Hindmarsh [2004]
with the exception that the first-order viscosity given by
Hindmarsh’s [2004] equation (A6) is now given by

ĥ 1ð Þ ¼ 1� n

n

h 0ð Þ

e 0ð Þ2 e 0ð Þ
xz ê

1ð Þ
xz þ 1

2
e 0ð Þ
xx ê 1ð Þ

xx � ê 1ð Þ
zz
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þ h 0ð Þ

B0 q 0ð Þ
� �

B q 0ð Þ
� � ;

ðA1Þ

where the difference between the isothermal and present
treatments is the second term on the right-hand side.

A2. Age Equation

[67] In scaled form, the steady age equation (11) is given
by

z

#�Q� #�q� z a� mð Þ � m

H
@zX þ u�rHX ¼ 1; ðA2Þ

where

q ¼
Z z

0

udz0;Q ¼
Z 1

0

udz0; ðA3Þ

This can be readily seen from equation (37) of Hindmarsh,
[1999]. In steady state, one can use

#�Q  a� mð Þ

to write this as

u�rHX �

#�qþ m

H
@zX ¼ 1: ðA4Þ

[68] Linearization of the age equation (A4) gives at zeroth
order

a 0ð Þ � m 0ð Þ� �
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and at first order the steady perturbation equation is
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which simplifies to
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and since we can also write

#�q 0ð Þ ¼ a� mð ÞW 0ð Þ zð Þ;

the first-order steady age equation can also be written as
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where the zeroth-order solution has been used to simplify
the last term on the right-hand side.
[69] The deviation of an isochrone with normalized

elevation zi(x) is given by

@zX
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i ¼ �X̂ 1ð Þ: ðA10Þ

With zero accumulation and melting, the Fourier-trans-
formed ageing equation (A8) becomes
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yielding this solution for the first-order age perturbation,
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and use of equation (A10) gives the isochrone deflection as
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Since
@X 0ð Þ
@z ¼ O(1/a), the last equation can be written
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and the previous results about isochrones tracking stream-
lines are immediately obtained. The flux gradient can be

F02018 HINDMARSH ET AL.: RADAR LAYER ARCHITECTURE

15 of 17

F02018



related to terms in the Gudmundsson [2003] full-system
solution and the Hindmarsh [2004] longitudinal stress
correction solution by the expression

�ikxq̂
1ð Þ
x ¼ �ŵ 1ð Þ � ikxðzĤ 1ð Þ þ b̂ 1ð ÞÞ:

A3. Heat Equation

[70] In scaled form, the heat equation (7) is
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which is equivalent to that given by Hindmarsh [1999,
equation (36)], apart from the horizontal conduction terms
(second and third terms on right-hand side), which follow
simply from the differential transforms for the normalized
coordinate. The parameters are given by
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Linearization and Fourier transformation of the scaled heat
equation leads to

lq̂ 1ð Þ ¼ ikxu
0ð Þ
x q̂ 1ð Þ þ w 0ð Þða� mÞ þ m

H 0ð Þ @zq̂ 1ð Þþ

b
H 0ð Þ2 @

2
z q̂

1ð Þ � b kj j2q̂ 1ð Þ þ b kj j2 @zq
0ð Þ

H 0ð Þ
~b 1ð Þ�

w 0ð Þ a� mð Þ þ m� z kj j2b
H 0ð Þ2 @zq 0ð Þ þ 2

b
H 0ð Þ3 @

2
z q

0ð Þ

 !
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Appendix B: Implementation of Sliding in the
Finite Element Calculations

[71] A commercial finite element (FE) program (MARC)
has been used to calculate the steady state geometry and its
flow field of an inclined ice mass flowing over a perturbed
bed. The program solves the full Stokes equations. The flow
field of this full-system (FS) model is then compared with
the flow field obtained from the shallow ice approximation
(SIA) model for the steady state geometry and the boundary
conditions as obtained and used in the FS model. For a full
description of the calculations the reader is referred to
Raymond and Gudmundsson [2005].

[72] In this appendix all quantities are taken to be
dimensional. The model geometry comprises a 2-D plane
flow model, inclined at 3�. Steady state surface geometry
was computed by evolving the surface geometry to a steady
state. The numerical calculations never suggested that there
was more than one steady configuration. Four different sets
of experiments with varying amplitudes (0.1, 0.2) and
wavelengths were computed for the following configura-
tions: (1) undulating bed, comprising (set a) ice frozen to
bed and (set b) ice mass sliding over bed with a constant
sliding factor (Co = 10), and (2) flat bed, comprising (set c)
sinusoidal perturbation in slipperiness and (set d) step
change in sliding behavior (no sliding-sliding-no sliding).
[73] These results are compared with the flow field for the

SIA model. This is not exactly the SIA model, as the surface
geometry used is the one computed using the FS velocity
field. However, the transfers of bed to surface for FS and SIA
are rather similar [Gudmundsson, 2003; Raymond and
Gudmundsson, 2005], so this does not significantly distort
the results. The fluxes of the two models are compared by
using a flux normalized with the FS surface flux. In steady
state this is constant for plane flow. Therefore the normalized
flux for the SIA model is obtained by integrating the velocity
shape function over depth and for the FSmodel by integrating
the FS velocity over depth and dividing it by its surface flux.
[74] To account for sliding at the glacier base, a relation

between sliding velocity vb and basal shear traction tb is
assumed,

ux bð Þ ¼ C xð Þtn0xz bð Þ; ðB1Þ

where C(x) is the slip ratio and n0 a parameter to be specified
Lliboutry, 1968, 1979]. This relation for sliding is
implemented in the numerical model by adding a thin soft
layer at the glacier base [Schweizer and Iken, 1992; Vieli et
al., 2000] with a flow law corresponding to equation (5) and
with flow parameters n0 and A0. Since the layer is thin, we
can assume that within this layer, the shallow ice
approximation holds.

e ¼ A0 tj jn
0�1

T:

[75] In the FS model the rate factor A or A0 is used as an
input parameter. For the basal layer an A0(x) is calculated to
correspond to the slip ratio C(x). From equation (B1) we
know that the C(x) is proportional to vb. For an ice slab with
thickness h, with an underlying thin soft layer of thickness d
and slope angle e the analytical solution of the basal
velocity vb at the ice interface in the shallow ice approxi-
mation [Hutter, 1983] is

ux bð Þ ¼
Z d

0

2A0tn
0

xzdz; ðB2Þ

where the basal shear traction is given by

txz ¼ rg hþ d � zð Þ sin e: ðB3Þ

The basal velocity of the ice is then given by computing the
integral of equation (B2),

ux bð Þ ¼
Z d

0

2A0 rg sin eð Þn
0
hþ d � zð Þn

0
dz

¼ 2A0

n0 þ 1
rg sin eð Þn

0
hþ dð Þ n0þ1ð Þ�h n0þ1ð Þ

� �
;
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and using (B1) to obtain C(x). For the case of the thin soft
basal layer the flow exponent is chosen to be n0 = 1.
[76] In the model experiments the mean slip ratio Co is

given and used to calculate the rate factor A0. A sliding
constant A00

o is defined by

A00
o ¼ Co

n0 þ 1

2

1

ho þ dð Þ n0þ1ð Þ�h
n0þ1ð Þ
o

: ðB4Þ

This value of A00
o is used in the constant sliding experiments

(section 5.2.2). It is also used in the definition of the
sinusoidally varying sliding (section 5.2.3),

A0 xð Þ ¼ A00
o 1þ g cos kxxð Þð Þ; ðB5Þ

where g is the amplitude of the perturbation. It is also used
in the on-off sliding

A0 xð Þ ¼ A00
o 0 � x < L=3; 2L=3 � x < L ðB6Þ

A0 xð Þ ¼ 0 L=3 � x < 2L=3: ðB7Þ

For the cases of constant slipperiness and sinusoidally
varying slipperiness, the mean slip ratio C0 = 10, while for
the cases of on/off sliding, the slip ratio alternated between
0 and 1.
[77] The computational grid comprised (61 � 31) nodes

(fixed bed) (section 5.2.1). For the sliding cases extra nodes
were used to represent the thin deforming layer, which was
2/30th the thickness of the ice sheet for constant sliding with
a (61 � 33) grid (x5.2.2), and for the spatially variable
sliding a (61 � 32) grid with a layer thickness of 1/30
(sections 5.2.3 and 5.2.4).

Appendix C: SIA Shape Functions

[78] As described by Paterson [1994, p. 251], where flow
is by internal deformation only, the velocity at depth H(1-z),
can be written in terms of the mean velocity as

ux x; zð Þ ¼ �u
nþ 2

nþ 1
1� 1� zð Þnþ1
� �

ðC1Þ

¼ �u xð Þu Dð Þ zð Þ; ðC2Þ

where

u Dð Þ zð Þ ¼ nþ 2

nþ 1
1� 1� zð Þnþ1
� �

ðC3Þ

is the shape function of the horizontal velocity with depth
and is the mean velocity.
[79] The flux of the SIA model can be calculated by

multiplying the surface flux from the FS model with the
shape function of the flux with depth w(D)(z)

w Dð Þ zð Þ ¼
Z z

0

u Dð Þ zð Þdz0 ðC4Þ

¼ nþ 2ð Þzþ 1� zð Þnþ2�1

nþ 1
: ðC5Þ

For pure basal sliding,

u Sð Þ zð Þ ¼ 1;w Sð Þ zð Þ ¼ z; ðC6Þ

while for combinations of internal deformation and basal
sliding,

u zð Þ ¼ 1

1þ C
u Dð Þ zð Þ þ C

1þ C
u Sð Þ zð Þ ðC7Þ

w zð Þ ¼ 1

1þ C
w Dð Þ zð Þ þ C

1þ C
w Sð Þ zð Þ: ðC8Þ
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