1,704 research outputs found

    Proactive Management of Pneumonia Epizootics in Bighorn Sheep in Montana—Project Update

    Get PDF
    Pneumonia epizootics are a major challenge for effective management of bighorn sheep (Ovis canadensis). Approximately half of the herds in Montana have suffered die-offs since the 1980s, many of which were pneumonia events. A set of models that identify risk of pneumonia and the best management decisions given that risk would be of great value for proactive management of pneumonia epizootics. Our first objective is to design and test a risk model that will help predict a herd’s risk of pneumonia. We hypothesize that various factors increase risk through pathogen exposure, pathogen spread, and disease susceptibility. Analysis of these factors comparing herds with and without recent pneumonia histories using Bayesian logistic regression will allow us to design a risk model. Our second objective is to develop a proactive decision model that incorporates estimates of pneumonia risk to help evaluate costs and benefits of alternative proactive actions appropriate to those estimates. We will use a Structured Decision Making framework, which provides a deliberative, transparent, and defensible decision-making process that is particularly valuable in complex decision-making environments such as wildlife disease management. Together the resulting risk and decision models, to be completed this year, will help managers estimate pneumonia risk and identify the best management action based on both the severity of each herd’s predicted risk and costs and benefits of competing management alternatives. Ultimately, this project will demonstrate the development and application of risk and decision models for proactive wildlife health programs in Montana Fish, Wildlife and Parks

    Energiebesparing door verminderde circulatie : aan/uit- versus frequentieregeling

    Get PDF
    De standaardnorm voor de luchtcirculatie bij de bewaring van tulpenbollen is 500 m3 lucht/uur/m 3 bollen. Eerder onderzoek wees uit dat deze hoeveelheid flink verminderd kan worden. In een demo-proefopstelling is dit verminderen d.m.v. een frequentieregeling vergeleken met een aan/uit regeling. Doel van deze opstelling was te demonstreren dat hiermee relatief veel energie bespaard kan worden zonder nadelige effecten op de bollen. Hiertoe zijn gedurende de bewaarperiode het ethyleen- en CO2 -gehalte, de relatieve luchtvochtigheid (RV) en de temperatuur tussen de bollen continue gemeten en digitaal opgeslagen. Daarnaast zijn bij verschillende kistenstapelingen en bij verschillende frequenties de totale luchthoeveelheid per stapeling en de luchtstroom per kist gemeten. De energie meterstanden zijn 3 maal per week bijgehouden

    Modeling Proactive Decisions to Manage Pneumonia Epizootics in Bighorn Sheep

    Get PDF
    Pneumonia epizootics in bighorn sheep (Ovis canadensis) are a major challenge for wildlife agencies due to the complexity of the disease, long-term impacts, and lack of tools to manage risk. We developed a decision model to facilitate proactive management of pneumonia epizootics in bighorn sheep in Montana. Our decision model integrates a risk model to predict probability of pneumonia epizootics based on identified risk factors. It uses a structured decision making (SDM) approach to analyze potential decisions based on predictions from the risk model, herd-specific management objectives, and predicted consequences and trade-offs. We demonstrated our model’s use with an analysis of representative herds and analyzed the recommended decisions to understand them clearly. We learned that proactive management for each herd was expected to outperform in meeting multiple, competing management objectives compared to ongoing status quo management. Based on sensitivity analyses, we also learned that the recommended decisions were relatively robust with limited sensitivity to variations in model inputs and uncertainties; we expect this to be the case in future analyses as well. Our decision model addressed the challenges of uncertainty, risk tolerance, and the multi-objective nature of management of bighorn sheep while providing a consistent, transparent, and deliberative approach for making decisions for each herd. It is a unique tool for managing pneumonia epizootics using an accessible framework for biologists and managers. Our work also provides a case study for developing similar SDM-based decision models, particularly for other wildlife diseases, to address challenges of making complex decisions

    A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    Get PDF
    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.Comment: Accepted for publication in Ap

    Rethinking Enterprise Network Control

    Full text link

    Design and testing of a co-rotating vibration excitation system

    Get PDF
    A vibration excitation system (VES) in a form of an active coupling is proposed, designed and manufactured. The system is equipped with a set of piezoelectric stack actuators uniformly distributed around the rotor axis and positioned parallel to each other. The actuator arrangement allows an axial displacement of the coupling halves as well as their rotation about any transverse axis. Through the application of the VES an aimed vibration excitation is realised in a co-rotating coordinate system, which enables a non-invasive and precise modal analysis of rotating components. As an example, the VES is applied for the characterisation of the structural dynamic behaviour of a generic steel rotor at different rotational speeds. The first results are promising for both stationary and rotating conditions

    The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample

    Get PDF
    We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z=1z=1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on the dark energy density \rho_{DE}(z) at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a LambdaCDM universe, we find \Omega_\Lambda = 0.724 +0.015/-0.016 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = -0.985 +0.071/-0.077 (68% CL). Curvature is constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark energy is allowed to vary with parameters w_0 and w_a. Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z>1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.Comment: 27 pages, 11 figures. Submitted to ApJ. This first posting includes updates in response to comments from the referee. See http://www.supernova.lbl.gov for other papers in the series pertaining to the HST Cluster SN Survey. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Unio
    corecore