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Abstract: A vibration excitation system (VES) in a form of an active coupling is proposed, designed
and manufactured. The system is equipped with a set of piezoelectric stack actuators uniformly
distributed around the rotor axis and positioned parallel to each other. The actuator arrangement
allows an axial displacement of the coupling halves as well as their rotation about any transverse
axis. Through the application of the VES an aimed vibration excitation is realised in a co-rotating
coordinate system, which enables a non-invasive and precise modal analysis of rotating components.
As an example, the VES is applied for the characterisation of the structural dynamic behaviour of a
generic steel rotor at different rotational speeds. The first results are promising for both stationary
and rotating conditions.

Keywords: vibration excitation; rotor; structural dynamic behaviour; rotational testing

1. Introduction

New developments in the turbo-machinery industry lead to constantly increasing demands
on the economic and ecological efficiency and on the reliability of rotating components. However,
the required increased performance of those components leads to higher dynamic requirements, which
can be achieved with a better understanding and characterisation of the dynamic behaviour under
rotating conditions.

In particular for the development of high performance rotors such as fan blades of aircraft
engines and turbine shafts for steam turbines a thorough analysis and understanding of the dynamic
characteristics are of high relevance. In this context, a defined vibration excitation is an important
prerequisite for the accurate, in-depth experimental determination of the structural dynamic behaviour
of rotors. An analysis of the natural frequencies, modal damping and shapes is essential for the
development of high performance rotors and can also be included in the monitoring of their structural
state. In most cases the operational rotor excitation cannot fulfil the requirements for such an analysis.
Since these properties are greatly dependent on the rotational speed, an excitation method of different
degrees of freedom in a co-rotating coordinate system is of particular interest.
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1.1. Motivation

Unbalanced, misaligned and mistuned components can cause vibrations which could lead to
undesirable dynamic load on the system, flow separation and turbulence. This is especially evident in
the case of aero-engine turbines and power energy systems.

In addition, the operation at critical speeds is always associated with increased vibration
amplitudes that can lead to unsteady flow conditions and an accompanying increased sound radiation.
Therefore, a characterisation of the dynamic behaviour of rotors under different rotational speeds is an
important factor for the optimal design and safe operation of rotors. Specifically, new experimental
methods appropriate for the investigation of complex phenomena such as non-linear behaviour,
gradual damage behaviour, internal friction and damping describing the structural behaviour of
metallic and composite rotors are required [1,2]. These phenomena are not adequately considered in
existing simulation models as they cannot be fully captured with existing measurement techniques not
least due to a lack of suitable vibration excitation systems [3].

1.2. Aim and Outline of the Paper

The aim of the described investigation is to develop a novel excitation method enabling an on
line vibration excitation for a non-invasive experimental modal analysis. To achieve this, a vibration
excitation system is proposed that can be utilised for an online aimed excitation of rotors. Based on
external sensor system and control software, a set of co-rotating piezo-stack actuators integrated to the
VES is excited in a predefined way. The novelty here is that the piezo-stack actuators are positioned
parallel to the rotational axis and they rotate along with the investigated rotor, which is an experimental
approach that has not yet been reported.

The paper is divided as follows. In Section 2 the concept is presented and the requirements
are identified for a specification of the concept. Based on the results, the dimensioning of the most
important components of the system is shown.

In Section 3, the prototype development and the assembly of the piezo-stack actuators are
described. Based on the developed prototype, first tests under rotation are conducted in Section 4 in
order to assess the functionality of the system and to perform an experimental modal analysis for a
metallic generic rotor.

1.3. State-of-the-Art

For the experimental modal analysis of rotating components several methods are known.
These methods combine different excitation and measurement techniques for the identification of
modal properties either at a standstill or at rotating conditions.

1.3.1. Excitation Systems

The excitation methods for rotors can be classified according to the position of the excitation,
resulting either in stationary excitation or in a co-rotating excitation. Several excitation methods are
state-of-the-art. These include air jets, electromechanical shakers, active magnetic bearings, piezo-stack
actuators, permanent magnets, non-contact laser ultrasonic excitation, eddy current systems and macro
fibre components (MFC) [4-8]. Other applications include the use of piezoelectric materials both as
actuator and as sensor, specifically for some controlling applications [9,10]. For example permanent
magnets have been used to excite titanium blades at fixed engine orders [11,12] and macro fibre
composites were used at scaled metal and composite fan blades providing in both cases relative small
forces [13-15]. Electromagnetic excitation can also be used for the excitation or damping of the shaft or
of a test rig itself, as presented in Refs. [16,17]. An application at a rotary device having piezoelectric
stack actuators to reduce vibrations of the rotating component, could also be used for the excitation of
a rotating component [18].
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In general, for a non-invasive base excitation the main disadvantage is the low force provided,
e.g., by active magnetic bearings, in comparison to the force provided by piezo-stack actuators [19].
The implementation of a co-rotating excitation method into a system involves great challenges due
to the rotational forces. The integration of an actuator, e.g., piezo elements to the rotor results also
in changes of its mass and stiffness characteristics, as well as it requires a complex integration and
contacting of the actuators [20]. A replacement of the actuators after a failure is also not possible.
Even solutions implementing piezo stack actuators which are perpendicular to the rotor bearings lack
the necessary degrees of freedom for the excitation in axial direction [21].

1.3.2. Methods for Vibration Measurement on Rotating Components

For the vibration measurement of rotating structures several systems are available. A well-known
non-contact measurement method based on the stationary coordinate system is the blade tip-timing
method, which evaluates time-dependent differences of blade passages after multiple rotor revolutions,
a known method first used in 1970’s, [22-25], as well as using continuous-scanning laser doppler
vibrometry (LDV) [26].

Another standard measurement approach is the application of strain gauges and lately fibre
Bragg grating at rotors, which measure the vibration characteristics continuously during the rotation.
The strain gauges are attached to points of reference at selected blades where frequencies and
amplitudes of blade vibrations are determined by measuring strain dynamic components. However,
the static position of the blades, which can provide significant diagnostic information about the possible
damage of the blade, cannot be determined with strain gauge systems. Another drawback is the fact
that in the aggressive environment of the steam turbine, the strain gauges experience a short lifetime
of usually several days or weeks. In addition, such systems can monitor only selected blades [23].

The vibration measurement of a rotating component with a coupled system of a scanning
laser vibrometer and an optical derotator delivers confident results [27], enabling a non-contact
determination of the modal properties. The laser beam is directed using a rotating, coaxially mounted
Dove prism to the rotor and thus it can measure in a co-rotating coordinate system [28]. However,
limitations are evident as an alignment of the derotator in axial direction to the plane of rotation is
necessary. Moreover the optical derotator requires a full optical window to the rotating component,
making it more suitable for laboratory conditions and prototype testing.

The optical derotator constitutes an autonomous device whose main elements are a rotating
unit with a Dove prism, a precision driving and an adjustment unit [29]. On the adjustment unit the
scanning laser doppler vibrometer as well as a single-point laser doppler vibrometer are mounted,
where defined scan points are measured sequentially. The single-point laser doppler vibrometer serves
as an accurate phase reference for the reconstruction of the vibration modes. Both lasers are directed
towards the rotating object through the Dove prism and they follow the defined measurement point of
the target precisely synchronised by means of the rotation optics [30].

2. Concept and Design of the Excitation System

A versatile excitation system, suitable for investigations on different rotors is designed in a
multi-material development approach dealing with the entire material, design, simulation, assembly
and prototype testing chain. Requirements are identified from a previous concept [31] for selected
rotor components as input for the design phase as shown in Figure 1. The concept specification takes
place for these rotors and their project-related requirements. A detailed design concept of a prototype
is proposed that is subsequently manufactured and tested.
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Figure 1. Four possible rotor geometries that can be measured using the developed system; (a) a generic

steel rotor, (b) a composite rotor, (c) an industrial steel rotor and (d) a titanium disk with composite
blades [15,32-34].

2.1. Principal Concept

The demand of an online vibration excitation for the experimental investigations of different
metallic and composite rotors has led to the concept of a co-rotating active coupling system and to a
patent application [31]. The patent describes a device that can excite rotors, such as centrifuges, aircraft
engines or turbines to vibrate, compensate imbalances and actively damp selected vibration modes
during operation, i.e., under rotation.

Here this concept is further elaborated and a co-rotating vibration excitation system is designed
and equipped with a number of piezoelectric stack actuators uniformly distributed around the rotor
axis and positioned parallel to each other, connecting two coupling halves Figure 2. The actuator
arrangement allows an axial displacement of the coupling halves as well as their rotation about any
transverse axis. The applied piezoelectric actuator system is particularly suitable for the intended test
rotors Figure 1a due to the appropriate degrees of freedom and the possibility of high force generation
in a broad frequency range. This is accomplished using three piezo-stack actuators, which are evenly
distributed over a common perimeter. The power supply to the actuators is realised through a suitable
high voltage slip ring.

- Energy and signal-
transmission
- Control

|

Piezo |

- » w
Piezo 2 7 \ cy

| Principal axis of inertial

Rotational-axis

§ Actuator
signal

Piezo 3

Rotor-axis e
Principal axis of inertia - - - -

Figure 2. Principal concept of the excitation system with sensors, actuators and software [31].

2.2. Requirement Identification and Selection of Technical Parameters

The requirements for the development of the excitation system depend on the rotors” boundary
conditions, on the used test bench system and on the requirements from the existing scientific projects.
Since the system is based on an existing design example, some requirements are to be considered as
base features that only vary in their values. For example, the necessary preload of the actuators can be
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achieved through various design solutions. In addition, the coupling elements between the VES, rotor
and test rig can be modified for each type of rotor - test rig combination, respectively.

The most important requirements for the design of the VES are listed below. First of all, the
geometry must be as compact as possible, with a short length to reduce unbalance and bending of the
VES. Furthermore, the VES kinematics have to be very accurately defined in the axial direction (z) and
to tilting and pivoting (rotation x, y) due to high acceleration values. The occurring forces have to be
analysed, originating from the preload force of the piezo actuators and forces from existing imbalance.
Furthermore, a proper selection of actuators that enable sufficiently high actuation forces for a reliable
measurement of the rotor’s vibration response is required. A suitable material selection for the VES is
also important for achieving an overall low mass combined with sufficient stiffness. This goal could be
met by the application of composite material with high specific anisotropic stiffness and strength.

Beyond the above-mentioned basic requirements, additional requirements exist to assure for
the proper operation of the VES. For example, a strain output is required from each actuator for the
determination of the prestress and actuator position and has to be taken into consideration during
the design phase. Furthermore, a redundant safety solution has to be designed and implemented for
high static and dynamic loading within actuation range. Last but not least, manufacturability with
small tolerances to reduce imbalance has to be taken into consideration during the design phase as
well as a simple assembly with central cable feed.

Based on the given requirements the most important technical parameters are identified and
taken into consideration during the design phase in order to ensure a proper functionality of the
system. The maximum rotational speed is an important parameter since it determines the acting loads
caused directly or indirectly by centrifugal forces. Another parameter is the maximal transmitted drive
torque, resulting from the required angular acceleration and the moment of inertia of the coupled
rotors. The rotor mass distribution determines the magnitude of the moment of inertia and the
required bending stiffness of the entire system. Under dynamic load the preload force is necessary to
protect the actuators from damage that can be caused by the inertia of their own and coupled masses.
Another important parameter is the axial rigidity (along the stroke path) of the preload system, which
determines the residual stroke and characteristic curve of the piezo actuator and should be a maximum
of 30% of the actuator stiffness [35]. The value results overall from the selected material and the specific
design. In terms of assembly space, the diameter of the cable bushing is important, as the cables must
be routed centrally along the axis of rotation in order to minimise possible sources of imbalance.

2.3. Concept Specification

The formulated requirements are solved by the proposed vibration excitation system, which is
equipped with a set of piezoelectric stack actuators, Figure 3. The main components of the excitation
system are the piezo actuators, the metallic elastic coupling element and the carbon fibre-reinforced
epoxy bandaging of the actuators. The main configuration is a parallel connection of the actuators
with one another forming an actuator group, and with a parallel connection of the actuator group with
the elastic coupling element.

The actuators are uniformly distributed around the rotor axis of rotation and are positioned
parallel to each other. This arrangement allows both a high overall torsional stiffness (main power
flow) and a favourable actuator pre-stress, which is characterised by a low stiffness of the coupling’s
pre-load system. The arrangement also allows an axial displacement of the coupling elements as well
as their rotation about any transverse axis. To allow a multi-directional excitation, the metallic elastic
coupling element (8) is designed as a cylindrical steel hub incoorporating multiple flexure hinges [36],
which provides direction-dependent adjustment of the stiffness. The piezo actuators (5) that are used
for the excitation exhibit a very limited bending strength. During operation the actuators are exposed
to high centrifugal loads, that act perpendicular to the central axis, causing bending loads. In order
to ensure proper operation, the actuators are embedded in a support structure (6), which consists of
an aluminium core that was wrapped up by a carbon fibre-reinforced epoxy bandage and positioned
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between spherical elements (2, 3). Bending loads throughout the balancing elements are prevented by
the support hub (7), which includes 3 symmetrically distributed holes, that act as slide bearings.

@ Preloading screw @ Piezo support structure

@ Test rig flange @ Support hub
(3) Spherical cap Support stamp
@ Spherical cap @ Spring element

@ Piezo-stack Rotor flange

Figure 3. An exploded design view of the main components of the vibration excitation system.

For the operation of the piezo actuators, an excitation signal has to be generated in an external
programmable signal generator and then enhanced by an amplifier. The acquisition of the necessary
signals is performed by an external sensing system. In the described investigations, the Laser scanning
Doppler vibrometer PSV-1-400 from the company Polytec [30] is used.

2.3.1. Selection of Piezo-Stack Actuators

Piezo stack actuators can be applied to act as linear electromechanical drivers [35]. They are
mostly used as an expanding element, which is often called a pusher, which generates a compressive
force. The applied piezo stack actuators are composite structures that are made by connecting multiple
piezoceramic discs with typical maximal voltages ranging from 300 V to 1000 V. The discs are made
from electro-active piezoceramic material, most commonly named PZT, a material combination of lead,
zirconium and titanium mixed-oxides. The complete motion cycle is almost proportional to the input
of the voltage signal from the direct current up to high frequencies. Based on the dynamic requirements
for the vibration and the identification of the rotor eigenfrequencies, specific actuators could be selected,
that can operate in the required bandwidth. The amplitude of excitation can be controlled from the
given voltage signal input. As long as the investigated structures and the applied actuators ar in the
linear area, then there should be a linear dependency between amplitude of excitation and amplitude
of the eigenfrequencies. Non-linear systems behave differently as they are dependent of the excitation
amplitude and consequently from the resulting vibration amplitude. In this manuscript only linear
systems have been in the scope of investigation. The former mentioned pre-loading of the actuators is
necessary, if high frequencies or highly changing loads have to be achieved. In this case, the inertia of
the actuator itself can cause cracking or delamination between several discs. Therefore, the stiffness
characteristics of an actuator have to be compared to the stiffness of the pre-load via the force/stroke
diagram, such as the one shown in Figure 4. For this purpose, the required maximum force Fy;x and
the maximum stroke AL, on the corresponding axes are transferred into a force-stroke diagram
and these points are connected via a straight line. This results in the stiffness characteristic of the
actuator. The area below the straight line represents the theoretical working range of an unloaded
actuator. For the determination of the suitable operating point, an origin line k; is entered whose
slope corresponds to the stiffness of a spring load. The point of intersection of the straight line of load
stiffness with the actuator stiffness characteristic marks the operating point. The frequency range of
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application depends on the first eigenfrequency of the actuator and the excitation range of the used
amplifier. In the typical range of application for each actuator, which is normally given form the
manufacturer, the force is mainly dependent from the applied voltage signal and the energy supplied.

60 k ALmax

4 Fti Ff 8 kN 12
Force

Figure 4. Force/stroke diagram of the piezo actuator PST1000/16/60, its stiffness and intersecting
stiffness defined by an exemplary mechanic (S), according to Ref. [35].

Hereby, OP marks the operating point corresponding to the maximal actuator voltage, AL.s¢
represents the maximum of stroke and F,f its corresponding force. It has to be noted, that the
corresponding force represents the lose in maximum achievable force Fy;, which is also minimized by
static forces Fss4r and leads to the following equation

Fres:Fmax_Feff_Fstat (1)

An actuator is suitable if its stiffness (k) is above or coincides with the load. Based on the
requirements, a PST 1000/16/60 actuator from Piezosystem Jena GmbH was selected as it provided a
good balance between the force-displacement profile and the possible assembly space. To introduce
the pre-load forces to each actuator, 3 screws are positioned right behind the load balancing elements
and an appropriate tightening torque is applied to these screws.

2.3.2. Dimensioning of the Coupling Element

For the design of the coupling element a parametrised computer-aided design (CAD) model is
used in order to adapt the stiffness. The decisive parameters for the design process are the width b,
height i and length t of the spring component, as shown in Figure 5b. The design goal is to achieve an
axial stiffness of the prestress-system which is equal to 10% of the actuator’s stiffness, resulting in a
low reduction of its stroke. At the same time the stress fields of the spring element were to remain in
acceptable limits using a safety factor of 1.5. Then the coupling is modelled to be clamped on one side
and loaded with a force on the opposite side, which is described in details in Section 2.4. The ratio of
force to the resulting displacement difference gives the stiffness for different geometry configurations.



Sensors 2019, 19, 92 8 of 15

AA
A— b
Gl D
n
A—

(a)
Figure 5. (a) Sketch of a single spring element (flexure hinge); (b) Geometric parameters; (c) CAD
drawing of the coupling element.

2.4. Simulation-Assisted Prototype Design

A numerical simulation of the excitation system was performed by means of a finite element model.
The system was modelled in the commercial software ANSYS Workbench with the help of ANSYS
Composite PrepPost. Selected degrees of freedom were constrained in order to simulate fixed boundary
conditions at the rig adapter at position (2) Figure 3. Furthermore, a number of simplifications were
implemented during the design process of the simulation model. The bolt connections were not
modelled since the focus was on the core section including the piezo stack actuators, the composite
bandage and the elastic spring element. The piezo actuators were further modelled as solid piezo
ceramic elements, without taking their layered structure into account. The stress distribution at the
excitation system is investigated under a preload of 4000 N on each of the piezo elements and at a
rotational speed of 15,000 rpm. The main focus was on the carbon fibre-reinforced plastic (CFRP)
bandage and its influence on the deformation behaviour of the piezo elements. Another focus was
on the elastic coupling element, since this part was designed to be the most flexible part and thus
experiences the largest strains and stresses.

2.4.1. Dimensioning of the CFRP-Bandaging

The stress distribution for both the piezo actuators and the CFRP-bandage are numerically
investigated using the same boundary conditions as previously presented. The piezo elements are
wrapped with the CFRP bandage to reduce the bending caused from the centrifugal forces. The filament
wound bandage was modelled with extruded Solid186 elements where six layers are used to represent
the composite material. For the evaluation, the stress in fibre direction and transverse to the fibre
direction as well as the Failure Mode Concept was used [37]. The resulting stress effort containing
the combination of two fibre failure modes (tension and compression) and three matrix failure modes
(tension, compression and shear) was considered and showed no failure with an uncritical value of
approximately 0.1, as demonstrated in Figure 6b. An intermediate modulus carbon fiber is selected
and embedded in epoxy resin providing high degree of radial stiffness. Based on the numerical results
and under consideration of the technical requirements of a minimum deformation and assembly space,
the composite layup consists exclusively of 0° layers with a thickness of 3 mm.

2.4.2. Elastic Coupling Element

For a load case of 4000 N, an equivalent von-Mises stress of approximately 300 MPa is located at
the inside edge of the coupling element, as shown in Figure 6a. The high stresses and the required
robustness of the coupling by a minimum mass dictates the use of a high-alloyed steel for the main
parts of the coupling. Therefore, alloy steel 42CrMo4 was selected in order to achieve a safety factor
towards operational stability of the steel material. Consequently, the mechanical integrity is also
demonstrated by the simulation results for the given load case.
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Figure 6. Stress distribution of the metallic spring element (a) and the resulting effort of the CFRP
bandage (b) under centrifugal load at 15,000 rpm and pre-load of 4000 N at each piezo element.

3. Manufacturing and Prototype Assembly

The actuators used here are stacks of several layers of thin piezoelectric discs, which are glued
together. Due to this fact they exhibit a fragile and brittle behaviour when exposed to tensile loads
parallel to the central axis and bending forces perpendicular to its central axis. Highly dynamic loads
can also result in degradation of the adhesion inside the bonds. Therefore, to prevent any damage
to the actuators, a preload has to be applied and the actuators are not allowed to experience any
bending. After the assembly, a pre-load was applied on the piezo actuators using a screw mechanism
and subsequently the actuators were checked for their functionality.

Embedding the Piezo Actuators

The piezo actuators (PSt 1000/16/60 from Piezosystem Jena GmbH) had to be prepared for the
integration in the piezo mounting system. As the piezo stack actuator has no defined outer diameter
in the delivered condition, an embedding tool was used to surround the piezo element with cast resin
to create a defined cylindrical surface, as shown in Figure 7a. After the curing of the resin, the piezo
was removed from the embedding tool and pressed into the piezo mounting, where also the spherical
steel heads are connected to the piezo actuators.

Figure 7. Embedded piezo actuator (a), filament wound piezo carrier (b), finished piezo mounting
with integrated piezo actuators (c) and outside view on the VES (d).

The piezo carrier as well as the piezo-stack actuators are wrapped with CFRP, shown in Figure 7c,
which were wound in a wet filament winding process and cured at room temperature and tempered
at 60 °C. After curing of the resin and subsequent tempering, the component was demoulded and
trimmed at the edges to remove unnecessary resin. In Figure 7d, the finished core component of the
excitation system is shown, including the filament wound CFRP bandage and the spherical heads for
the load transmission.



Sensors 2019, 19, 92 10 of 15

4. Prototype Testing

As the VES is exposed to dynamic loads, it was experimentally tested during operation in order
to assess the piezo actuators. Then, the structural functionality of the whole system is investigated,
in particular to examine the durability of the composite assembly and of the coupling element.

4.1. Endurance Test by Rotational Run-Up

At first, the system had to undergo a rotational endurance test in order to evaluate its resilience
under high centrifugal loads. These loads lead to different loading conditions depending on the
position and geometry of each specific part. For instance, the coupling element exhibits an expansion
similar to a pressure vessel, due to the reduced stiffness in its middle section, whereas the piezo
actuators exhibit bending loads, due to their eccentric position. For this purpose, the system was
mounted onto a test bench and stepwise exposed to several rotational speeds. The VES has been
accelerated with 2 rad /s? to three different rotational speeds (5000 rpm, 10,000 rpm and 15,000 rpm),
then kept on constant speed for 120 s and decelerated to a standstill. At each rotational test a visual
inspection was performed in order to detect possible defects and damage initiation. Furthermore,
the functionality of the integrated piezo-actuators was examined. The measured electrical capacity
of the actuators remained unchanged after each test. It could be verified that both the metal parts of
the VES as well as the piezo-actuators have withstood the introduced loads and the endurance of the
VES was ensured. Before and after the endurance tests additional modal analyses were performed
to identify changes of the modal parameters of the VES, caused by possible structural alterations.
The analysis were carried out under laboratory conditions, the set-up is presented in Figure 8a.
Therefore, the VES was mounted onto a vibration isolated table and excited using an impactor with
integrated force sensor, that delivered the reference of the excitation signal. Figure 8b shows the
measuring grid that was applied for the laser scanning process.

PC Unit
Impaktor “ ﬂ
LSV Force Sencor
‘ (]
| Shaker

| Isolated Table |
// \\ I Amplifier h;, i

(@) (b)
Figure 8. Test set-up of the modal analysis of the VES (a) and applied measuring grid (b).

[ﬁ[ﬁ\

The results of the modal analysis are presented in Table 1 and show marginal changes of the first
5 eigenfrequencies after the endurance test.

Table 1. Comparison of the first 5 eigenfrequencies of the VES before and after endurance testing.

Unit f; f2 f3 fa f5
before run-up Hz 1316 1768 2097 2987 4481
after run-up (15,000 rpm) Hz 1316 1744 2027 2992 4476
A % 00 -14 -33 02 -0.1

The relative change A of the frequencies is in the range of 0 to 3.3%. The standard deviation of the
measurement system for repeated testing was examined in other tests and is around 3%. Therefore,
the change of the frequencies caused by the endurance test is sufficiently low to be considered as
statistically not relevant.
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4.2. Testing of a Generic Rotor

An experimental modal analysis has been performed in order to investigate the structural dynamic
behaviour of the generic rotors. For this purpose, this generic steel rotor was excited and the vibration
response was measured under stationary conditions and at different rotational speeds. The tests
were performed under stationary conditions and during rotation up to 2000 rpm. The rotor is shown
in Figure 9a together with the selected scanning grid that was used to identify the modal parameters
of one single blade and the whole rotor Figure 9b.

40 mm

R00E

160 mm

(@) (b)
Figure 9. Investigated generic rotor with the main geometry parameters (a) and mesh grid (b) that was
used for the modal analysis of the fan blade.

The acquisition of the vibration response was carried out by employing the POLYTEC laser
scanning vibrometer (LSV) in combination with the POLYTEC optical derotator, that is shown in
Figure 10. The derotator contains a Dove prism, driven by a motor allowing quasi-static measurements
during rotation and is connected to an encoder that delivers a signal reporting the current speed of
the driving spindle motor of the test bench. To generate the excitation, a high-voltage signal was
transferred by a slip ring.

PC-Unit

. e

Test Bench

Ring

Derotator

Amplifier

Figure 10. Experimental set-up for the modal analysis of rotating structures.

The general set-up involves the PSV-I-400 optical scanning head equipped with the highly
sensitivity vibrometer sensor (OFV-505), OFV-5000 controller, PSV-E-400 junction box and the
acquisition computer system. In addition, a single-point vibrometer was used to deliver a reference
signal of the dynamic structural behaviour. The excitation signal was created in the PSV software
and then generated and transformed by an amplifier that was driving the piezo actuators. The tests
were performed under environmental conditions and under technical vacuum. During the tests,
80 measurement points were selected as shown in Figure 9b. Frequencies up to 800 Hz were measured
with a resolution of 0.5 Hz. The measurements were performed at 0, 1000, 1500 and 2000 rpm. Several
eigenfrequencies as well as the corresponding mode shapes were identified. The power spectral
density diagrams of the generic steel rotor at two different rotational speeds are shown in Figure 11.



Sensors 2019, 19, 92 12 of 15

o

rotation 01‘:ders : — 2000 RPM :

e s ¢/(i|x Q:

1 1 1 1 1 1
0 100 200 300 400 500 600 Hz 800
Frequency

Normalised Logarithmic Magnitude
—_
T

Figure 11. Power spectral density of the 0° generic steel rotor at 0 rpm and 2000 rpm.

The analysed eigenfrequencies of the generic rotor at 0, 1000, 1500 and 2000 rpm are shown in
Table 2. Increasing values of the eigenfrequencies are observed due to the stiffening effects from the
rotation. Due to manufacturing tolerances, the system has undergone some inherent imbalance, which
deteriorated the modal analysis and subsequently the eigenfrequency extraction in some cases. Overall,
the system accomplishes its main goal, which was the excitation of a rotor under different rotational
speeds along with a wide range of frequencies.

Table 2. Comparison of the first 6 eigenfrequencies of the metallic rotor at different rotational speeds,
where—are missing values due to high noise and imbalance.

Rotational Speed Unit  f; f2 f3 fa f5 fe

0 rpm Hz 1410 162.0 208.0 625.0 647.0 772.0
1000 rpm Hz 1425 - - 626.0 6465 7735
1500 rpm Hz 1435 - 2105 6265 6475 7735
2000 rpm Hz - 166.0 213.0 629.0 650.0 776.0

5. Summary and Outlook

A novel co-rotating vibration excitation system has been designed and manufactured, which
allows the realisation of a non-invasive modal analysis of rotating components. The co-rotating
vibration excitation system is capable of exciting rotors under rotational conditions for a determination
of speed-dependent modal parameters. The results show the capability of the system under different
rotational speeds on the example of a generic metallic rotor. The system was validated under
non-rotating and rotating conditions using a Scanning Laser Doppler Vibrometer mounted on an
optical derotator and aligned coaxially to the rotor by using a Dove prism. The novelty of this method
lies to the fact that a set of piezo-stack actuators are positioned parallel to the rotational axis and they
rotate along with the investigated rotor, which has not yet been reported.

A number of further investigations are under consideration and will be published in the near
future. First of all, the behaviour of the excitation system should be further investigated including
different types of metallic rotors and by testing real rotor-bladed discs in order to identify the
application limits of the current solution. Specifically, in the case of composite rotors it is important
to investigate whether the transferred energy to the rotor is sufficient due to the increased material
damping and coulomb damping, e.g., between compressor blades and metal rotor hub. A further
development of the high-power electronics is required in order to realise other types excitation such
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as sweep, sine, burst random and white noise excitation in addition to the impulse excitation used
so far. Due to project and resources limitations, the current electronic system does not allow for an
individual control of the piezo actuators. The required power supply of the excitation system is a
challenge, as only few slip rings exist that can achieve rotational speeds up to 10,000 rpm. However
they are relative expensive and also limited in the power supply. It is however possible to supply each
piezo actuator using a separate channel form the same slip ring. Electrical disturbance and limitations
do exist but it is possible at least under laboratory conditions. The application of the method to larger
rotors supported in two or more bearings still is under investigation, with an idea of adjusting the
system also for these cases.

Moreover, the operational stability as well as the fatigue of the system was not investigated,
especially the behaviour of the piezo actuators and the CFRP-bandage under long-term testing and
has to be also conducted. The vibration excitation system has to be compared to different excitation
methods in order to determine the advantages and drawbacks of the current system. The possibility
to scale up the co-rotating excitation system has to be considered for larger rotor systems and also
possible limitations of hardware solutions due to complex loading conditions and high rotational
speeds have to be taken into account. Last but not least, the current proposed system can be used
as basis for the development of a co-rotating vibration excitation system for metallic and composite
drive shafts.

In general, the proposed solution can fulfil a vibration excitation of a rotor during operation
and combined with a laser scanning vibrometer mounted on an optical derotator can perform an
experimental modal analysis under different rotational speeds.
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The following abbreviations are used in this manuscript:

VES Vibration Excitation System

MFC  Macro Fibre Component

LDV  Laser Doppler Vibrometry

PZT Pb(lead)-Zr(zirconium)-Ti(Titanium) mixed-oxides
CAD  computer-aided design

CFRP  carbon fibre-reinforced plastic

LSV Laser Scanning Vibrometer

References

1.  Gude, M, Filippatos, A.; Langkamp, A.; Hufenbach, W.; Kuschmierz, R.; Fischer, A.; Czarske, ]. Model
assessment of a composite mock-up bladed rotor based on its vibration response and radial expansion.
Compos. Struct. 2015, 124, 394-401. [CrossRef]

2.  Filippatos, A.; Gude, M. Influence of Gradual Damage on the Structural Dynamic Behaviour of Composite
Rotors: Experimental Investigations. Materials 2018, 11, doi:10.3390/ma11122421. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.compstruct.2015.01.030
https://doi.org/10.3390/ma11122421
http://dx.doi.org/10.3390/ma11122421
http://www.ncbi.nlm.nih.gov/pubmed/30501126

Sensors 2019, 19, 92 14 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

Filippatos, A.; Langkamp, A.; Gude, M. Influence of Gradual Damage on the Structural Dynamic Behaviour
of Composite Rotors: Simulation Assessment. Materials 2018, 11, doi:10.3390/ma11122453. [CrossRef]
Pesaresi, L.; Salles, L.; Elliott, R.; Jones, A.; Green, ].; Schwingshackl, C. Numerical and experimental
investigation of an underplatform damper test rig. Appl. Mech. Mater. 2016, 849, 1-12. [CrossRef]
Raubenheimer, G.; van der Spuy, S.; von Backstrom, T. The Use of Air Injection Nozzles for the Forced
Excitation of Axial Compressor Blades. Int. J. Turbo Jet Eng. 2013, 30, 55-65. [CrossRef]

Niezrecki, C.; Brei, D.; Balakrishnan, S.; Moskalik, A. Piezoelectric actuation: State of the art. Shock Vib. Dig.
2001, 33, 269-280. [CrossRef]

An, YK,; Park, B.; Sohn, H. Complete noncontact laser ultrasonic imaging for automated crack visualization
in a plate. Smart Mater. Struct. 2013, 22, 025022. [CrossRef]

Ruffini, V.; Nauman, T.; Schwingshackl, C. Impulse excitation of piezoelectric patch actuators for modal
analysis. In Topics in Modal Analysis & Testing, Volume 10; Springer: Berlin, Germany, 2017; pp. 97-106.
Giorgio, I.; Culla, A.; Del Vescovo, D. Multimode vibration control using several piezoelectric transducers
shunted with a multiterminal network. Arch. Appl. Mech. 2009, 79, 859. [CrossRef]

Lumentut, M.; Howard, 1. Effect of shunted piezoelectric control for tuning piezoelectric power harvesting
system responses—Analytical techniques. Smart Mater. Struct. 2015, 24, 105029. [CrossRef]

Provenza, A.].; Duffy, K.P. Experimental Methodology for Determining Turbomachinery Blade Damping
Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements. Avaliable online: https:
/ /ntrs.nasa.gov/archive/nasa/casintrs.nasa.gov/20100039314.pdf (accessed on 27 December 2018).
Pesek, L.; Vanék, E; Bula, V,; Cibulka, J. Excitation of blade vibration under rotation by synchronous
electromagnet. Eng. Mech. 2011, 18, 249-257.

Dufty, K.P.; Choi, B.B.; Provenza, A.].; Min, ].B.; Kray, N. Active piezoelectric vibration control of subscale
composite fan blades. J. Eng. Gas Turbines Power 2013, 135, 011601. [CrossRef]

Kostka, P.; Holeczek, K.; Filippatos, A.; Hufenbach, W. Integration of health monitoring system for composite
rotors. In Proceedings of the 18th International Conference on Composite Materials ICCM18), Jeju Island,
Korea, 21-26 August 2011.

Ruffini, V.; Schwingshackl, C.; Green, J. Experimental and analytical study of Coriolis effects in bladed disk.
In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Boston, MA, USA, 2-5 August 2015.

Brown, G.V,; Kielb, R.E.; Meyn, E.H.; Morris, R.E.; Posta, S.J. Lewis Research Center Spin Rig and Its Use in
Vibration Analysis of Rotating Systems; Lewis Research Center: Cleveland, OH, USA, 1984.

Das, A.; Nighil, M.; Dutt, J.; Irretier, H. Vibration control and stability analysis of rotor-shaft system with
electromagnetic exciters. Mech. Mach. Theory 2008, 43, 1295-1316. [CrossRef]

Scheurer, F. Balancing Device and Method. W02001075412 A1, 11 October 2001.

Aenis, M.; Knopf, E.; Nordmann, R. Active magnetic bearings for the identification and fault diagnosis in
turbomachinery. Mechatronics 2002, 12, 1011-1021. [CrossRef]

Min, J.B.; Duffy, K.P; Choi, B.B.; Provenza, A.; Kray, N. Piezoelectric vibration damping study for rotating
composite fan blades. In Proceedings of the 14th AIAA Structures, Structural Dynamics, and Materials
Conference, Honolulu, HI, USA, 23-26 April 2012; pp. 23-26.

Simdes, R.C.; Steffen, V.; Der Hagopian, J.; Mahfoud, ]J. Modal active vibration control of a rotor using
piezoelectric stack actuators. J. Vib. Control 2007, 13, 45-64. [CrossRef]

Di Maio, D.; Ewins, D. Experimental measurements of out-of-plane vibrations of a simple blisk design using
blade tip timing and scanning LDV measurement methods. Mech. Syst. Signal Process. 2012, 28, 517-527.
[CrossRef]

Prochazka, P; Vanék, F. Non-contact systems for monitoring blade vibrations of steam turbines.
In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium,
17-19 September 2012; pp. 17-19.

Zielinski, M.; Ziller, G. Noncontact vibration measurements on compressor rotor blades. Meas. Sci. Technol.
2000, 11, 847. [CrossRef]

Georgiev, V.; Holik, M,; Kraus, V.; Krutina, A.; Kubin, Z; Ligka, J.; Poupa, M. The blade flutter measurement
based on the blade tip timing method. In Proceedings of the 15th WSEAS International Conference on
Systems, Corfu Island, Greece, 14-16 July 2011; pp. 270-275.


https://doi.org/10.3390/ma11122453
http://dx.doi.org/10.3390/ma11122453
http://dx.doi.org/10.4028/www.scientific.net/AMM.849.1
http://dx.doi.org/10.1515/tjj-2012-0031
http://dx.doi.org/10.1177/058310240103300401
http://dx.doi.org/10.1088/0964-1726/22/2/025022
http://dx.doi.org/10.1007/s00419-008-0258-x
http://dx.doi.org/10.1088/0964-1726/24/10/105029
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100039314.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100039314.pdf
http://dx.doi.org/10.1115/1.4007720
http://dx.doi.org/10.1016/j.mechmachtheory.2007.10.007
http://dx.doi.org/10.1016/S0957-4158(02)00009-0
http://dx.doi.org/10.1177/1077546306070227
http://dx.doi.org/10.1016/j.ymssp.2011.09.018
http://dx.doi.org/10.1088/0957-0233/11/7/301

Sensors 2019, 19, 92 15 of 15

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.

DiMaio, D.; Ewins, D. Applications of continuous tracking SLDV measurement methods to axially symmetric
rotating structures using different excitation methods. Mech. Syst. Signal Process. 2010, 24, 3013-3036.
[CrossRef]

Staszewski, W.J.; bin Jenal, R.; Klepka, A.; Szwedo, M.; Uhl, T. A Review of Laser Doppler Vibrometry for
Structural Health Monitoring Applications. Key Eng. Mater. 2012, 518, 1-15. [CrossRef]

Polytec GmbH. Theory Manual of Polytec Scanning Vibrometer, 8th ed.; Polytec GmbH: Waldbronn,
Germany, 2010.

Boedecker, S.; Drabenstedt, A.; Heller, L.; Kraft, A.; Leonhardt, A.; Pape, C.; Ristau, S.; Reithmeier, E.;
Rembe, C. Optical derotator for scanning vibrometer measurements on rotating objects. Proc. SPIE 2006,
6345, 63450M.

Vibrometer, P.S. Theory Manual; Polytec GmbH: Waldbronn, Germany, 2008.

Hufenbach, W.; Kostka, P,; Filippatos, A. Verfahren und Vorrichtung an Rotorsystemen. DE102014217363A1,
5 March 2013.

Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, ]. Multi-sensor
system for in-situ shape monitoring and damage identification of high-speed composite rotors. Mech. Syst.
Signal Process. 2016, 76, 187-200. [CrossRef]

Wollmann, T.; Filippatos, A.; Salles, L.; Lang, T.; Hoffmann, N.; Modler, N. Development of a combined
numerical and experimental approach for the 3D dynamic analysis of rotating components. In Proceedings
of the FVV 2018 Autumn Conference, Wiirzburg, Germany, 27-28 September 2018; pp. 219-250.
Wollmann, T.; Modler, N.; Dannemann, M.; Langkamp, A.; Nitschke, S.; Filippatos, A. Design and testing
of composite compressor blades with focus on the vibration behaviour. Compos. Part A 2017, 92, 183-189.
[CrossRef]

Pickelmann, L.; Pickelmann, L. Piezomechanics: An Introduction; TM. International, Ltd.: London, UK, 2003.
Lobontiu, N. Compliant Mechanisms: Design of Flexure Hinges; CRC Press: Boca Raton, FL, USA, 2002.
Cuntze, R.; Freund, A. The predictive capability of failure mode concept-based strength criteria for
multidirectional laminates. Compos. Sci. Technol. 2004, 64, 343-377. [CrossRef]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.ymssp.2010.06.012
http://dx.doi.org/10.4028/www.scientific.net/KEM.518.1
http://dx.doi.org/10.1016/j.ymssp.2016.02.009
http://dx.doi.org/10.1016/j.compositesa.2016.06.012
http://dx.doi.org/10.1016/S0266-3538(03)00218-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Aim and Outline of the Paper
	State-of-the-Art
	Excitation Systems
	Methods for Vibration Measurement on Rotating Components


	Concept and Design of the Excitation System
	Principal Concept
	Requirement Identification and Selection of Technical Parameters
	Concept Specification
	Selection of Piezo-Stack Actuators
	Dimensioning of the Coupling Element

	Simulation-Assisted Prototype Design
	Dimensioning of the CFRP-Bandaging
	Elastic Coupling Element


	Manufacturing and Prototype Assembly
	Prototype Testing
	Endurance Test by Rotational Run-Up
	Testing of a Generic Rotor

	Summary and Outlook
	References

